These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32894402)

  • 1. Uncertainty promotes information-seeking actions, but what information?
    Keller AM; Taylor HA; Brunyé TT
    Cogn Res Princ Implic; 2020 Sep; 5(1):42. PubMed ID: 32894402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of learning and environmental geometry in landmark-based spatial reorientation of fish (Xenotoca eiseni).
    Sovrano VA; Baratti G; Lee SA
    PLoS One; 2020; 15(3):e0229608. PubMed ID: 32126075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Where did it come from, where do you go? Direction sources influence navigation decisions during spatial uncertainty.
    Brunyé TT; Gagnon SA; Gardony AL; Gopal N; Holmes A; Taylor HA; Tenbrink T
    Q J Exp Psychol (Hove); 2015; 68(3):585-607. PubMed ID: 25285995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential navigational strategies during spatial learning in a new modified version of the Oasis maze.
    Concha-Miranda M; More J; Grinspun N; Sanchez C; Paula-Lima A; Valdés JL
    Behav Brain Res; 2020 May; 385():112555. PubMed ID: 32109438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of human spatial navigation responding to input spatial information and output navigational strategies: An ALE meta-analysis.
    Qiu Y; Wu Y; Liu R; Wang J; Huang H; Huang R
    Neurosci Biobehav Rev; 2019 Aug; 103():60-72. PubMed ID: 31201830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary Motor Cortex Transforms Spatial Information into Planned Action during Navigation.
    Olson JM; Li JK; Montgomery SE; Nitz DA
    Curr Biol; 2020 May; 30(10):1845-1854.e4. PubMed ID: 32302586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.
    Wegman J; Tyborowska A; Janzen G
    Hippocampus; 2014 Jul; 24(7):853-68. PubMed ID: 24706395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of orientation change during environmental learning on age-related difference in spatial memory.
    Yamamoto N; Fox MJ; Boys E; Ord J
    Behav Brain Res; 2019 Jun; 365():125-132. PubMed ID: 30851314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task.
    Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z
    Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of visual map complexity on the attentional processing of landmarks.
    Keil J; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2020; 15(3):e0229575. PubMed ID: 32119712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are allocentric spatial reference frames compatible with theories of Enactivism?
    König SU; Goeke C; Meilinger T; König P
    Psychol Res; 2019 Apr; 83(3):498-513. PubMed ID: 28770385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The developmental trajectory of intramaze and extramaze landmark biases in spatial navigation: An unexpected journey.
    Buckley MG; Haselgrove M; Smith AD
    Dev Psychol; 2015 Jun; 51(6):771-91. PubMed ID: 25844850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementary landmarks facilitate ant navigation.
    Hunt ER; Kendall C; Stanbury E; Sendova-Franks AB; Franks NR
    Behav Processes; 2018 Dec; 157():702-710. PubMed ID: 29522840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related preference for geometric spatial cues during real-world navigation.
    Bécu M; Sheynikhovich D; Tatur G; Agathos CP; Bologna LL; Sahel JA; Arleo A
    Nat Hum Behav; 2020 Jan; 4(1):88-99. PubMed ID: 31548677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Route-learning strategies in typical and atypical development; eye tracking reveals atypical landmark selection in Williams syndrome.
    Farran EK; Formby S; Daniyal F; Holmes T; Van Herwegen J
    J Intellect Disabil Res; 2016 Oct; 60(10):933-44. PubMed ID: 27634746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial reorientation decline in aging: the combination of geometry and landmarks.
    Caffò AO; Lopez A; Spano G; Serino S; Cipresso P; Stasolla F; Savino M; Lancioni GE; Riva G; Bosco A
    Aging Ment Health; 2018 Oct; 22(10):1372-1383. PubMed ID: 28726502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel virtual plus-maze for studying electrophysiological correlates of spatial reorientation.
    Torok A; Kóbor A; Honbolygó F; Baker T
    Neurosci Lett; 2019 Feb; 694():220-224. PubMed ID: 30476567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human aging alters the neural computation and representation of space.
    Schuck NW; Doeller CF; Polk TA; Lindenberger U; Li SC
    Neuroimage; 2015 Aug; 117():141-50. PubMed ID: 26003855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Restricted Peripheral Field-of-View on Spatial Learning while Navigating.
    Barhorst-Cates EM; Rand KM; Creem-Regehr SH
    PLoS One; 2016; 11(10):e0163785. PubMed ID: 27760150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of spatial stability and cue type on spatial learning: Implications for theories of parallel memory systems.
    Buckley MG; Austen JM; Myles LAM; Smith S; Ihssen N; Lew AR; McGregor A
    Cognition; 2021 Sep; 214():104802. PubMed ID: 34225248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.