BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32894656)

  • 1. Response surface methodology optimization of polyhydroxyalkanoate production by Burkholderia cepacia BPT1213 using waste glycerol from palm oil-based biodiesel production.
    Mohd Zain NF; Paramasivam M; Tan JS; Lim V; Lee CK
    Biotechnol Prog; 2021 Jan; 37(1):e3077. PubMed ID: 32894656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759.
    Zhu C; Nomura CT; Perrotta JA; Stipanovic AJ; Nakas JP
    Biotechnol Prog; 2010; 26(2):424-30. PubMed ID: 19953601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams.
    Fu J; Sharma U; Sparling R; Cicek N; Levin DB
    Can J Microbiol; 2014 Jul; 60(7):461-8. PubMed ID: 24983445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of newly isolated thermotolerant bacterium Cupriavidus sp. CB15 from composting and its ability to produce polyhydroxyalkanoate from glycerol.
    Yootoum A; Jantanasakulwong K; Rachtanapun P; Moukamnerd C; Chaiyaso T; Pumas C; Tanadchangsaeng N; Watanabe M; Fukui T; Insomphun C
    Microb Cell Fact; 2023 Apr; 22(1):68. PubMed ID: 37046250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and characterization of PHA from isolate Pannonibacter phragmitetus ERC8 using glycerol waste.
    Ray S; Prajapati V; Patel K; Trivedi U
    Int J Biol Macromol; 2016 May; 86():741-9. PubMed ID: 26851207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source.
    Chanasit W; Hodgson B; Sudesh K; Umsakul K
    Biosci Biotechnol Biochem; 2016 Jul; 80(7):1440-50. PubMed ID: 26981955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of polyhydroxyalkanoate production capacity, composition and weight synthesized by
    Chin JH; Samian MR; Normi YM
    Heliyon; 2022 Mar; 8(3):e09174. PubMed ID: 35368536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate.
    Kenny ST; Runic JN; Kaminsky W; Woods T; Babu RP; O'Connor KE
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):623-33. PubMed ID: 22581066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Production of Polyhydroxyalkanoate Through Halophilic Bacteria Utilizing Algal Biodiesel Waste Residue.
    Dubey S; Mishra S
    Front Bioeng Biotechnol; 2021; 9():624859. PubMed ID: 34604181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of medium-chain-length polyhydroxyalkanoate biosynthesis by Pseudomonas mosselii TO7 using crude glycerol.
    Liu MH; Chen YJ; Lee CY
    Biosci Biotechnol Biochem; 2018 Mar; 82(3):532-539. PubMed ID: 29338575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of polyhydroxyalkanoate from food waste oil by Pseudomonas alcaligenes with simultaneous energy recovery from fermentation wastewater.
    Pan L; Li J; Wang R; Wang Y; Lin Q; Li C; Wang Y
    Waste Manag; 2021 Jul; 131():268-276. PubMed ID: 34175751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme.
    Razack SA; Duraiarasan S
    Waste Manag; 2016 Jan; 47(Pt A):98-104. PubMed ID: 26248487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of inhibitory effects of hemicellulosic wood hydrolysate inhibitors on PHA production by Burkholderia cepacia ATCC 17759 using response surface methodology.
    Pan W; Nomura CT; Nakas JP
    Bioresour Technol; 2012 Dec; 125():275-82. PubMed ID: 23037882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Aeromonas caviae polyhydroxyalkanoate synthase gene in Burkholderia sp. USM (JCM15050) enables the biosynthesis of SCL-MCL PHA from palm oil products.
    Chee JY; Lau NS; Samian MR; Tsuge T; Sudesh K
    J Appl Microbiol; 2012 Jan; 112(1):45-54. PubMed ID: 22054430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Archaeal production of polyhydroxyalkanoate (PHA) co- and terpolyesters from biodiesel industry-derived by-products.
    Hermann-Krauss C; Koller M; Muhr A; Fasl H; Stelzer F; Braunegg G
    Archaea; 2013; 2013():129268. PubMed ID: 24453697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production.
    Volova T; Demidenko A; Kiselev E; Baranovskiy S; Shishatskaya E; Zhila N
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):225-237. PubMed ID: 30367183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard.
    Mohammed S; Behera HT; Dekebo A; Ray L
    Int J Biol Macromol; 2020 Aug; 156():1064-1080. PubMed ID: 31751740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate strategy optimization for polyhydroxyalkanoates producing culture enrichment from crude glycerol.
    Wen Q; Liu B; Li F; Chen Z
    Bioresour Technol; 2020 Sep; 311():123516. PubMed ID: 32428849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging.
    Tripathi AD; Raj Joshi T; Kumar Srivastava S; Darani KK; Khade S; Srivastava J
    Prep Biochem Biotechnol; 2019; 49(6):567-577. PubMed ID: 30929621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate.
    Pan W; Perrotta JA; Stipanovic AJ; Nomura CT; Nakas JP
    J Ind Microbiol Biotechnol; 2012 Mar; 39(3):459-69. PubMed ID: 21953365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.