These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32894720)

  • 21. CSITime: Privacy-preserving human activity recognition using WiFi channel state information.
    Yadav SK; Sai S; Gundewar A; Rathore H; Tiwari K; Pandey HM; Mathur M
    Neural Netw; 2022 Feb; 146():11-21. PubMed ID: 34839089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Effective Multi-Label Protein Sub-Chloroplast Localization Prediction by Skipped-Grams of Evolutionary Profiles Using Deep Neural Network.
    Bankapur S; Patil N
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1449-1458. PubMed ID: 33175683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods.
    Arcos-García Á; Álvarez-García JA; Soria-Morillo LM
    Neural Netw; 2018 Mar; 99():158-165. PubMed ID: 29427842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-Rank Deep Convolutional Neural Network for Multitask Learning.
    Su F; Shang HY; Wang JY
    Comput Intell Neurosci; 2019; 2019():7410701. PubMed ID: 31236107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm.
    Song J; Liu G; Jiang J; Zhang P; Liang Y
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using a deep convolutional network to predict the longitudinal dispersion coefficient.
    Ghiasi B; Jodeiri A; Andik B
    J Contam Hydrol; 2021 Jun; 240():103798. PubMed ID: 33770526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CAST: A multi-scale convolutional neural network based automated hippocampal subfield segmentation toolbox.
    Yang Z; Zhuang X; Mishra V; Sreenivasan K; Cordes D
    Neuroimage; 2020 Sep; 218():116947. PubMed ID: 32474081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic benchmarks: a collection of datasets for genomic sequence classification.
    Grešová K; Martinek V; Čechák D; Šimeček P; Alexiou P
    BMC Genom Data; 2023 May; 24(1):25. PubMed ID: 37127596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Feature Selection Algorithm on Speech Emotion Recognition Using Deep Convolutional Neural Network.
    Farooq M; Hussain F; Baloch NK; Raja FR; Yu H; Zikria YB
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performing protein fold recognition by exploiting a stack convolutional neural network with the attention mechanism.
    Han K; Liu Y; Xu J; Song J; Yu DJ
    Anal Biochem; 2022 Aug; 651():114695. PubMed ID: 35487269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network.
    Alom MZ; Yakopcic C; Nasrin MS; Taha TM; Asari VK
    J Digit Imaging; 2019 Aug; 32(4):605-617. PubMed ID: 30756265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network.
    Kilicarslan S; Adem K; Celik M
    Med Hypotheses; 2020 Apr; 137():109577. PubMed ID: 31991364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HARTH: A Human Activity Recognition Dataset for Machine Learning.
    Logacjov A; Bach K; Kongsvold A; Bårdstu HB; Mork PJ
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition.
    Cho M; Ha J; Park C; Park S
    J Biomed Inform; 2020 Mar; 103():103381. PubMed ID: 32004641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning Cascade Attention for fine-grained image classification.
    Zhu Y; Li R; Yang Y; Ye N
    Neural Netw; 2020 Feb; 122():174-182. PubMed ID: 31683145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Deep Machine Learning Method for Concurrent and Interleaved Human Activity Recognition.
    Thapa K; Abdullah Al ZM; Lamichhane B; Yang SH
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.