BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32894949)

  • 21. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.
    Destgeer G; Ha B; Park J; Sung HJ
    Anal Chem; 2016 Apr; 88(7):3976-81. PubMed ID: 26937678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells.
    Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A
    ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Outer Acoustic Streaming Flow Driven by Asymmetric Acoustic Resonances.
    Lei J; Zheng G; Yao Z; Huang Z
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices.
    Lei J; Glynne-Jones P; Hill M
    Microfluid Nanofluidics; 2017; 21(2):23. PubMed ID: 32226356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles.
    Xie Y; Ahmed D; Lapsley MI; Lu M; Li S; Huang TJ
    J Lab Autom; 2014 Apr; 19(2):137-43. PubMed ID: 23592570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing.
    Devendran C; Choi K; Han J; Ai Y; Neild A; Collins DJ
    Lab Chip; 2020 Aug; 20(15):2674-2688. PubMed ID: 32608464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MHz-Order Surface Acoustic Wave Thruster for Underwater Silent Propulsion.
    Zhang N; Wen Y; Friend J
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32316135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves.
    Collins DJ; O'Rorke R; Neild A; Han J; Ai Y
    Soft Matter; 2019 Nov; 15(43):8691-8705. PubMed ID: 31657435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach.
    Samandari M; Abrinia K; Sanati-Nezhad A
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.