These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32895024)

  • 21. Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing.
    Fu QJ; Nogaki G
    J Assoc Res Otolaryngol; 2005 Mar; 6(1):19-27. PubMed ID: 15735937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cognitive factors contribute to speech perception in cochlear-implant users and age-matched normal-hearing listeners under vocoded conditions.
    O'Neill ER; Kreft HA; Oxenham AJ
    J Acoust Soc Am; 2019 Jul; 146(1):195. PubMed ID: 31370651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Listening Effort in Prelingual Cochlear Implant Recipients: Effects of Spectral and Temporal Auditory Processing and Contralateral Acoustic Hearing.
    Yüksel M; Taşdemir İ; Çiprut A
    Otol Neurotol; 2022 Dec; 43(10):e1077-e1084. PubMed ID: 36099588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners.
    Nelson PB; Jin SH; Carney AE; Nelson DA
    J Acoust Soc Am; 2003 Feb; 113(2):961-8. PubMed ID: 12597189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of a clinical assessment of spectral-ripple resolution for cochlear implant users.
    Drennan WR; Anderson ES; Won JH; Rubinstein JT
    Ear Hear; 2014; 35(3):e92-8. PubMed ID: 24552679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Masking release and modulation interference in cochlear implant and simulation listeners.
    Jin SH; Nie Y; Nelson P
    Am J Audiol; 2013 Jun; 22(1):135-46. PubMed ID: 23800809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Mandarin Chinese Speech Recognition in Adults with Cochlear Implants Using the Spectral Ripple Discrimination Test.
    Dai C; Zhao Z; Shen W; Zhang D; Lei G; Qiao Y; Yang S
    Med Sci Monit; 2018 May; 24():3557-3563. PubMed ID: 29806954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of age and hearing mechanism on spectral resolution in normal hearing and cochlear-implanted listeners.
    Horn DL; Dudley DJ; Dedhia K; Nie K; Drennan WR; Won JH; Rubinstein JT; Werner LA
    J Acoust Soc Am; 2017 Jan; 141(1):613. PubMed ID: 28147578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users.
    Fu QJ; Chinchilla S; Galvin JJ
    J Assoc Res Otolaryngol; 2004 Sep; 5(3):253-60. PubMed ID: 15492884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the Spectral-Temporally Modulated Ripple Test With the Arizona Biomedical Institute Sentence Test in Cochlear Implant Users.
    Lawler M; Yu J; Aronoff JM
    Ear Hear; 2017; 38(6):760-766. PubMed ID: 28957975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between spectrotemporal modulation detection and music perception in normal-hearing, hearing-impaired, and cochlear implant listeners.
    Choi JE; Won JH; Kim CH; Cho YS; Hong SH; Moon IJ
    Sci Rep; 2018 Jan; 8(1):800. PubMed ID: 29335454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Depth matters - Towards finding an objective neurophysiological measure of behavioral amplitude modulation detection based on neural threshold determination.
    Waechter SM; Lopez Valdes A; Simoes-Franklin C; Viani L; Reilly RB
    Hear Res; 2018 Mar; 359():13-22. PubMed ID: 29291949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Auditory models of suprathreshold distortion and speech intelligibility in persons with impaired hearing.
    Bernstein JG; Summers V; Grassi E; Grant KW
    J Am Acad Audiol; 2013 Apr; 24(4):307-28. PubMed ID: 23636211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discrimination of Stochastic Frequency Modulation by Cochlear Implant Users.
    Sheft S; Cheng MY; Shafiro V
    J Am Acad Audiol; 2015 Jun; 26(6):572-81. PubMed ID: 26134724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deactivating stimulation sites based on low-rate thresholds improves spectral ripple and speech reception thresholds in cochlear implant users.
    Zhou N
    J Acoust Soc Am; 2017 Mar; 141(3):EL243. PubMed ID: 28372106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Music perception with temporal cues in acoustic and electric hearing.
    Kong YY; Cruz R; Jones JA; Zeng FG
    Ear Hear; 2004 Apr; 25(2):173-85. PubMed ID: 15064662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Noise Reduction Algorithm ClearVoice in Cochlear Implant Processing: Effects on Noise Tolerance and Speech Intelligibility in Noise in Relation to Spectral Resolution.
    Dingemanse JG; Goedegebure A
    Ear Hear; 2015; 36(3):357-67. PubMed ID: 25479412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amplitude Modulation Detection and Speech Recognition in Late-Implanted Prelingually and Postlingually Deafened Cochlear Implant Users.
    De Ruiter AM; Debruyne JA; Chenault MN; Francart T; Brokx JP
    Ear Hear; 2015; 36(5):557-66. PubMed ID: 25851075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.