These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32895378)

  • 1. The trajectory of intrahelical lesion recognition and extrusion by the human 8-oxoguanine DNA glycosylase.
    Shigdel UK; Ovchinnikov V; Lee SJ; Shih JA; Karplus M; Nam K; Verdine GL
    Nat Commun; 2020 Sep; 11(1):4437. PubMed ID: 32895378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Basis for the Lesion-scanning Mechanism of the MutY DNA Glycosylase.
    Wang L; Chakravarthy S; Verdine GL
    J Biol Chem; 2017 Mar; 292(12):5007-5017. PubMed ID: 28130451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nucleobase lesion remodels the interaction of its normal neighbor in a DNA glycosylase complex.
    Banerjee A; Verdine GL
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15020-5. PubMed ID: 17015827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA.
    Banerjee A; Yang W; Karplus M; Verdine GL
    Nature; 2005 Mar; 434(7033):612-8. PubMed ID: 15800616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the major oxidative damage 7,8-dihydro-8-oxoguanine presented into a catalytically competent DNA glycosylase.
    Schmaltz LF; Ceniceros JE; Lee S
    Biochem J; 2022 Nov; 479(21):2297-2309. PubMed ID: 36268656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical analysis of DNA helix invasion by the bacterial 8-oxoguanine DNA glycosylase MutM.
    Sung RJ; Zhang M; Qi Y; Verdine GL
    J Biol Chem; 2013 Apr; 288(14):10012-10023. PubMed ID: 23404556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1.
    Crenshaw CM; Nam K; Oo K; Kutchukian PS; Bowman BR; Karplus M; Verdine GL
    J Biol Chem; 2012 Jul; 287(30):24916-28. PubMed ID: 22511791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations.
    Radom CT; Banerjee A; Verdine GL
    J Biol Chem; 2007 Mar; 282(12):9182-94. PubMed ID: 17114185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme.
    Qi Y; Spong MC; Nam K; Banerjee A; Jiralerspong S; Karplus M; Verdine GL
    Nature; 2009 Dec; 462(7274):762-6. PubMed ID: 20010681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Mechanisms Associated with Clustered Lesion-Induced Impairment of 8-oxoG Recognition by the Human Glycosylase OGG1.
    Jiang T; Monari A; Dumont E; Bignon E
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA Deformation-Coupled Recognition of 8-Oxoguanine: Conformational Kinetic Gating in Human DNA Glycosylase.
    Li H; Endutkin AV; Bergonzo C; Fu L; Grollman A; Zharkov DO; Simmerling C
    J Am Chem Soc; 2017 Feb; 139(7):2682-2692. PubMed ID: 28098999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex.
    Park MJ; Park JH; Hahm SH; Ko SI; Lee YR; Chung JH; Sohn SY; Cho Y; Kang LW; Han YS
    DNA Repair (Amst); 2009 Oct; 8(10):1190-200. PubMed ID: 19615952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global DNA dynamics of 8-oxoguanine repair by human OGG1 revealed by stopped-flow kinetics and molecular dynamics simulation.
    Lukina MV; Koval VV; Lomzov AA; Zharkov DO; Fedorova OS
    Mol Biosyst; 2017 Sep; 13(10):1954-1966. PubMed ID: 28770925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase.
    Sowlati-Hashjin S; Wetmore SD
    Biochemistry; 2018 Feb; 57(7):1144-1154. PubMed ID: 29320630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping and structural elucidation of a very advanced intermediate in the lesion-extrusion pathway of hOGG1.
    Lee S; Radom CT; Verdine GL
    J Am Chem Soc; 2008 Jun; 130(25):7784-5. PubMed ID: 18507380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [New non-hydrolyzable substrate analogs for 8-oxoguanine-DNA glycosylases].
    Taraneneko MV; Volkov EM; Saparbarv MK; Kuznetsov SA
    Mol Biol (Mosk); 2004; 38(5):858-68. PubMed ID: 15554188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.
    Bilotti K; Kennedy EE; Li C; Delaney S
    DNA Repair (Amst); 2017 Nov; 59():1-8. PubMed ID: 28892740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase.
    Kuznetsova AA; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS
    Biochim Biophys Acta; 2014 Jan; 1840(1):387-95. PubMed ID: 24096108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 8-oxoguanine on DNA structure and deformability.
    Dršata T; Kara M; Zacharias M; Lankaš F
    J Phys Chem B; 2013 Oct; 117(39):11617-22. PubMed ID: 24028561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase.
    Kuznetsov NA; Kuznetsova AA; Vorobjev YN; Krasnoperov LN; Fedorova OS
    PLoS One; 2014; 9(6):e98495. PubMed ID: 24911585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.