These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32895566)

  • 1. Climbing fiber synapses rapidly and transiently inhibit neighboring Purkinje cells via ephaptic coupling.
    Han KS; Chen CH; Khan MM; Guo C; Regehr WG
    Nat Neurosci; 2020 Nov; 23(11):1399-1409. PubMed ID: 32895566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ephaptic Coupling Promotes Synchronous Firing of Cerebellar Purkinje Cells.
    Han KS; Guo C; Chen CH; Witter L; Osorno T; Regehr WG
    Neuron; 2018 Nov; 100(3):564-578.e3. PubMed ID: 30293822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of cerebellar microzonal organization in GluD2 (GluRδ2) knockout mouse.
    Hashizume M; Miyazaki T; Sakimura K; Watanabe M; Kitamura K; Kano M
    Front Neural Circuits; 2013; 7():130. PubMed ID: 23970854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of the complex spike in cerebellar Purkinje cells.
    Davie JT; Clark BA; Häusser M
    J Neurosci; 2008 Jul; 28(30):7599-609. PubMed ID: 18650337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α2δ-2 Protein Controls Structure and Function at the Cerebellar Climbing Fiber Synapse.
    Beeson KA; Beeson R; Westbrook GL; Schnell E
    J Neurosci; 2020 Mar; 40(12):2403-2415. PubMed ID: 32086258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2
    Harmon TC; McLean DL; Raman IM
    J Neurosci; 2020 Apr; 40(15):3063-3074. PubMed ID: 32139583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic excitation by climbing fibre collaterals in the cerebellar nuclei of juvenile and adult mice.
    Najac M; Raman IM
    J Physiol; 2017 Nov; 595(21):6703-6718. PubMed ID: 28795396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system.
    De Zeeuw CI; Koekkoek SK; Wylie DR; Simpson JI
    J Neurophysiol; 1997 Apr; 77(4):1747-58. PubMed ID: 9114233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using deep neural networks to detect complex spikes of cerebellar Purkinje cells.
    Markanday A; Bellet J; Bellet ME; Inoue J; Hafed ZM; Thier P
    J Neurophysiol; 2020 Jun; 123(6):2217-2234. PubMed ID: 32374226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of glutamate receptor delta 2 subunit (GluRdelta 2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development.
    Hashimoto K; Ichikawa R; Takechi H; Inoue Y; Aiba A; Sakimura K; Mishina M; Hashikawa T; Konnerth A; Watanabe M; Kano M
    J Neurosci; 2001 Dec; 21(24):9701-12. PubMed ID: 11739579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons.
    Ozden I; Sullivan MR; Lee HM; Wang SS
    J Neurosci; 2009 Aug; 29(34):10463-73. PubMed ID: 19710300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct translation of climbing fiber burst-mediated sensory coding into post-synaptic Purkinje cell dendritic calcium.
    Roh SE; Kim SH; Ryu C; Kim CE; Kim YG; Worley PF; Kim SK; Kim SJ
    Elife; 2020 Sep; 9():. PubMed ID: 32985976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of Cerebellar Nuclei Neurons Correlates with ZebrinII Identity of Their Purkinje Cell Afferents.
    Beekhof GC; Gornati SV; Canto CB; Libster AM; Schonewille M; De Zeeuw CI; Hoebeek FE
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition gates supralinear Ca
    Gaffield MA; Rowan MJM; Amat SB; Hirai H; Christie JM
    Elife; 2018 Aug; 7():. PubMed ID: 30117806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of variable synaptic weights for rate and temporal coding of cerebellar outputs.
    Wu S; Wardak A; Khan MM; Chen CH; Regehr WG
    Elife; 2024 Jan; 13():. PubMed ID: 38241596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells.
    Orduz D; Llano I
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17831-6. PubMed ID: 17965230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kv1 K+ channels control Purkinje cell output to facilitate postsynaptic rebound discharge in deep cerebellar neurons.
    McKay BE; Molineux ML; Mehaffey WH; Turner RW
    J Neurosci; 2005 Feb; 25(6):1481-92. PubMed ID: 15703402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination.
    Ichikawa R; Hashimoto K; Miyazaki T; Uchigashima M; Yamasaki M; Aiba A; Kano M; Watanabe M
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2282-7. PubMed ID: 26858447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells.
    Mittmann W; Häusser M
    J Neurosci; 2007 May; 27(21):5559-70. PubMed ID: 17522301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.