These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 32895791)
1. The biosorption of reactive red dye onto orange peel waste: a study on the isotherm and kinetic processes and sensitivity analysis using the artificial neural network approach. Alwared AI; Al-Musawi TJ; Muhaisn LF; Mohammed AA Environ Sci Pollut Res Int; 2021 Jan; 28(3):2848-2859. PubMed ID: 32895791 [TBL] [Abstract][Full Text] [Related]
2. Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Karaman C; Karaman O; Show PL; Karimi-Maleh H; Zare N Chemosphere; 2022 Mar; 290():133346. PubMed ID: 34929270 [TBL] [Abstract][Full Text] [Related]
3. Equilibrium, kinetic and thermodynamic studies of acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent. Deniz F; Saygideger SD Bioresour Technol; 2010 Jul; 101(14):5137-43. PubMed ID: 20194017 [TBL] [Abstract][Full Text] [Related]
4. Utilization of unconventional lignocellulosic waste biomass for the biosorption of toxic triphenylmethane dye malachite green from aqueous solution. Selvasembian R; P B Int J Phytoremediation; 2018 May; 20(6):624-633. PubMed ID: 29688057 [TBL] [Abstract][Full Text] [Related]
5. Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent. Lam YF; Lee LY; Chua SJ; Lim SS; Gan S Ecotoxicol Environ Saf; 2016 May; 127():61-70. PubMed ID: 26802563 [TBL] [Abstract][Full Text] [Related]
6. Characterization of biosorption process of acid orange 7 on waste brewery's yeast. Wu Y; Hu Y; Xie Z; Feng S; Li B; Mi X Appl Biochem Biotechnol; 2011 Apr; 163(7):882-94. PubMed ID: 20853160 [TBL] [Abstract][Full Text] [Related]
7. Bioremediation potential of a widespread industrial biowaste as renewable and sustainable biosorbent for synthetic dye pollution. Deniz F; Yildiz H Int J Phytoremediation; 2019; 21(3):259-267. PubMed ID: 30652489 [TBL] [Abstract][Full Text] [Related]
8. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution. Aksu Z; Isoglu IA J Hazard Mater; 2006 Sep; 137(1):418-30. PubMed ID: 16603311 [TBL] [Abstract][Full Text] [Related]
9. Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: kinetic study, equilibrium isotherm and artificial neural network modeling. Yang Y; Wang G; Wang B; Li Z; Jia X; Zhou Q; Zhao Y Bioresour Technol; 2011 Jan; 102(2):828-34. PubMed ID: 20869234 [TBL] [Abstract][Full Text] [Related]
10. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. Guerrero-Coronilla I; Morales-Barrera L; Cristiani-Urbina E J Environ Manage; 2015 Apr; 152():99-108. PubMed ID: 25617874 [TBL] [Abstract][Full Text] [Related]
11. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. Aksakal O; Ucun H J Hazard Mater; 2010 Sep; 181(1-3):666-72. PubMed ID: 20541317 [TBL] [Abstract][Full Text] [Related]
12. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Feng N; Guo X; Liang S; Zhu Y; Liu J J Hazard Mater; 2011 Jan; 185(1):49-54. PubMed ID: 20965652 [TBL] [Abstract][Full Text] [Related]
13. An attractive agro-industrial by-product in environmental cleanup: dye biosorption potential of untreated olive pomace. Akar T; Tosun I; Kaynak Z; Ozkara E; Yeni O; Sahin EN; Akar ST J Hazard Mater; 2009 Jul; 166(2-3):1217-25. PubMed ID: 19153007 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. Albadarin AB; Mangwandi C J Environ Manage; 2015 Dec; 164():86-93. PubMed ID: 26355260 [TBL] [Abstract][Full Text] [Related]
15. A low-cost and eco-friendly biosorbent material for effective synthetic dye removal from aquatic environment: characterization, optimization, kinetic, isotherm and thermodynamic studies. Deniz F; Tezel Ersanli E Int J Phytoremediation; 2020; 22(4):353-362. PubMed ID: 31512499 [TBL] [Abstract][Full Text] [Related]
16. Removal of copper(II) and cadmium(II) ions from aqueous solutions by biosorption onto pine cone. Değirmen G; Kılıç M; Cepelioğullar O; Pütün AE Water Sci Technol; 2012; 66(3):564-72. PubMed ID: 22744687 [TBL] [Abstract][Full Text] [Related]
17. Artificial neural network modeling for Congo red adsorption on microwave-synthesized akaganeite nanoparticles: optimization, kinetics, mechanism, and thermodynamics. Nguyen VD; Nguyen HTH; Vranova V; Nguyen LTN; Bui QM; Khieu TT Environ Sci Pollut Res Int; 2021 Feb; 28(8):9133-9145. PubMed ID: 33128712 [TBL] [Abstract][Full Text] [Related]
18. Artificial neural network-based modeling of Malachite green adsorption onto baru fruit endocarp: insights into equilibrium, kinetic, and thermodynamic behavior. Nascimento MX; Santos BAPD; Nassarden MMS; Nogueira KDS; Barros RGDS; Golin R; Siqueira AB; Vasconcelos LG; Morais EB Int J Phytoremediation; 2024 Sep; 26(11):1749-1763. PubMed ID: 38757757 [TBL] [Abstract][Full Text] [Related]
19. Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions. Amin MT; Alazba AA; Shafiq M Environ Monit Assess; 2019 Nov; 191(12):735. PubMed ID: 31707527 [TBL] [Abstract][Full Text] [Related]
20. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling. Nayak AK; Pal A J Environ Manage; 2017 Sep; 200():145-159. PubMed ID: 28577452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]