These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 32895792)
101. Dynamics of Sulfate-Reducing Bacteria Community Structure in Surface Sediment of a Seasonally Hypoxic Enclosed Bay. Mori F; Umezawa Y; Kondo R; Wada M Microbes Environ; 2018 Dec; 33(4):378-384. PubMed ID: 30449831 [TBL] [Abstract][Full Text] [Related]
102. Prokaryotic diversity in stream sediments affected by acid mine drainage. Carlier JD; Ettamimi S; Cox CJ; Hammani K; Ghazal H; Costa MC Extremophiles; 2020 Nov; 24(6):809-819. PubMed ID: 32888054 [TBL] [Abstract][Full Text] [Related]
103. Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area. Liu J; Yin M; Zhang W; Tsang DCW; Wei X; Zhou Y; Xiao T; Wang J; Dong X; Sun Y; Chen Y; Li H; Hou L Environ Pollut; 2019 May; 248():916-928. PubMed ID: 30856507 [TBL] [Abstract][Full Text] [Related]
104. S Cycling: Characterization of Natural Communities of Sulfate-Reducing Bacteria by 16S rRNA Sequence Comparisons. Devereux R; Hines ME; Stahl DA Microb Ecol; 1996 Nov; 32(3):283-92. PubMed ID: 8849423 [TBL] [Abstract][Full Text] [Related]
105. Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage. Liu J; Li C; Jing J; Zhao P; Luo Z; Cao M; Ma Z; Jia T; Chai B Water Res; 2018 Apr; 133():99-109. PubMed ID: 29367051 [TBL] [Abstract][Full Text] [Related]
106. Microbial biogeography of acid mine drainage sediments at a regional scale across southern China. Hao YQ; Zhao XF; Ai HX; Gao SM; Teng WK; Zheng J; Shu WS FEMS Microbiol Ecol; 2022 Feb; 98(1):. PubMed ID: 35108388 [TBL] [Abstract][Full Text] [Related]
107. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Galhardi JA; Bonotto DM Environ Sci Pollut Res Int; 2016 Sep; 23(18):18911-27. PubMed ID: 27335014 [TBL] [Abstract][Full Text] [Related]
108. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China. Tian H; Gao P; Chen Z; Li Y; Li Y; Wang Y; Zhou J; Li G; Ma T Front Microbiol; 2017; 8():143. PubMed ID: 28210252 [TBL] [Abstract][Full Text] [Related]
109. Metals other than uranium affected microbial community composition in a historical uranium-mining site. Sitte J; Löffler S; Burkhardt EM; Goldfarb KC; Büchel G; Hazen TC; Küsel K Environ Sci Pollut Res Int; 2015 Dec; 22(24):19326-41. PubMed ID: 26122566 [TBL] [Abstract][Full Text] [Related]
110. Bacterial community profile of contaminated soils in a typical antimony mining site. Wang N; Zhang S; He M Environ Sci Pollut Res Int; 2018 Jan; 25(1):141-152. PubMed ID: 28039624 [TBL] [Abstract][Full Text] [Related]
111. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond. Xiao E; Krumins V; Tang S; Xiao T; Ning Z; Lan X; Sun W Environ Pollut; 2016 Aug; 215():141-153. PubMed ID: 27182975 [TBL] [Abstract][Full Text] [Related]
112. Microbial community structure in an uranium-rich acid mine drainage site: implication for the biogeochemical release of uranium. Wei X; Chen H; Zhu F; Li J Front Microbiol; 2024; 15():1412599. PubMed ID: 38993490 [TBL] [Abstract][Full Text] [Related]
113. Microbial Communities Associated With Passive Acidic Abandoned Coal Mine Remediation. Ly T; Wright JR; Weit N; McLimans CJ; Ulrich N; Tokarev V; Valkanas MM; Trun N; Rummel S; Grant CJ; Lamendella R Front Microbiol; 2019; 10():1955. PubMed ID: 31507566 [TBL] [Abstract][Full Text] [Related]
114. Pollution caused by mining reshaped the structure and function of bacterial communities in China's largest ion-adsorption rare earth mine watershed. Shu W; Li F; Zhang Q; Li Z; Qiao Y; Audet J; Chen G J Hazard Mater; 2023 Jun; 451():131221. PubMed ID: 36934702 [TBL] [Abstract][Full Text] [Related]
115. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Neculita CM; Zagury GJ; Bussière B J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207 [TBL] [Abstract][Full Text] [Related]
116. Gradient of acid mine drainage regulates microbial community assembly and the diversity of species associated with native plants. Cai Q; Obieze CC; Pyke R; Delorme K; Maynard C; Greer CW; Khasa D Environ Pollut; 2024 Oct; 363(Pt 1):125059. PubMed ID: 39362621 [TBL] [Abstract][Full Text] [Related]
117. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Sun M; Xiao T; Ning Z; Xiao E; Sun W Appl Microbiol Biotechnol; 2015 Mar; 99(6):2911-22. PubMed ID: 25408313 [TBL] [Abstract][Full Text] [Related]
118. In-situ remediation of acid mine drainage from abandoned coal mine by filed pilot-scale passive treatment system: Performance and response of microbial communities to low pH and elevated Fe. Chen H; Xiao T; Ning Z; Li Q; Xiao E; Liu Y; Xiao Q; Lan X; Ma L; Lu F Bioresour Technol; 2020 Dec; 317():123985. PubMed ID: 32805482 [TBL] [Abstract][Full Text] [Related]
119. Microbial diversity and community structure dynamics in acid mine drainage: Acidic fire with dissolved heavy metals. Sajjad W; Ilahi N; Kang S; Bahadur A; Banerjee A; Zada S; Ali B; Rafiq M; Zheng G Sci Total Environ; 2024 Jan; 909():168635. PubMed ID: 37981161 [TBL] [Abstract][Full Text] [Related]
120. Temperature and nutrients as drivers of microbially mediated arsenic oxidation and removal from acid mine drainage. Tardy V; Casiot C; Fernandez-Rojo L; Resongles E; Desoeuvre A; Joulian C; Battaglia-Brunet F; Héry M Appl Microbiol Biotechnol; 2018 Mar; 102(5):2413-2424. PubMed ID: 29380031 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]