These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 32895932)
1. Alleles in metabolic and oxygen-sensing genes are associated with antagonistic pleiotropic effects on life history traits and population fitness in an ecological model insect. Marden JH; Langford EA; Robertson MA; Fescemyer HW Evolution; 2021 Jan; 75(1):116-129. PubMed ID: 32895932 [TBL] [Abstract][Full Text] [Related]
2. Genetic variation in HIF signaling underlies quantitative variation in physiological and life-history traits within lowland butterfly populations. Marden JH; Fescemyer HW; Schilder RJ; Doerfler WR; Vera JC; Wheat CW Evolution; 2013 Apr; 67(4):1105-15. PubMed ID: 23550759 [TBL] [Abstract][Full Text] [Related]
3. Enzyme polymorphism, oxygen and injury: a lipidomic analysis of flight-induced oxidative damage in a Pekny JE; Smith PB; Marden JH J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29444838 [TBL] [Abstract][Full Text] [Related]
4. Modelling single nucleotide effects in phosphoglucose isomerase on dispersal in the Glanville fritillary butterfly: coupling of ecological and evolutionary dynamics. Zheng C; Ovaskainen O; Hanski I Philos Trans R Soc Lond B Biol Sci; 2009 Jun; 364(1523):1519-32. PubMed ID: 19414467 [TBL] [Abstract][Full Text] [Related]
5. Molecular-level variation affects population growth in a butterfly metapopulation. Hanski I; Saccheri I PLoS Biol; 2006 May; 4(5):e129. PubMed ID: 16620151 [TBL] [Abstract][Full Text] [Related]
6. Functional genomics of life history variation in a butterfly metapopulation. Wheat CW; Fescemyer HW; Kvist J; Tas E; Vera JC; Frilander MJ; Hanski I; Marden JH Mol Ecol; 2011 May; 20(9):1813-28. PubMed ID: 21410806 [TBL] [Abstract][Full Text] [Related]
7. Plastic larval development in a butterfly has complex environmental and genetic causes and consequences for population dynamics. Saastamoinen M; Ikonen S; Wong SC; Lehtonen R; Hanski I J Anim Ecol; 2013 May; 82(3):529-39. PubMed ID: 23347450 [TBL] [Abstract][Full Text] [Related]
8. A candidate locus for variation in dispersal rate in a butterfly metapopulation. Haag CR; Saastamoinen M; Marden JH; Hanski I Proc Biol Sci; 2005 Dec; 272(1580):2449-56. PubMed ID: 16271968 [TBL] [Abstract][Full Text] [Related]
9. Significant effects of Pgi genotype and body reserves on lifespan in the Glanville fritillary butterfly. Saastamoinen M; Ikonen S; Hanski I Proc Biol Sci; 2009 Apr; 276(1660):1313-22. PubMed ID: 19129143 [TBL] [Abstract][Full Text] [Related]
10. Fitness differences associated with Pgi SNP genotypes in the Glanville fritillary butterfly (Melitaea cinxia). Orsini L; Wheat CW; Haag CR; Kvist J; Frilander MJ; Hanski I J Evol Biol; 2009 Feb; 22(2):367-75. PubMed ID: 19032494 [TBL] [Abstract][Full Text] [Related]
11. Antagonistic pleiotropy can promote adaptation to patchy environments. Wang Z; Cong H Evolution; 2021 Jan; 75(1):197-199. PubMed ID: 33215705 [TBL] [Abstract][Full Text] [Related]
12. Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments. Hanski I; Mononen T Ecol Lett; 2011 Oct; 14(10):1025-34. PubMed ID: 21794053 [TBL] [Abstract][Full Text] [Related]
13. Heritability of and strong single gene (Pgi) effects on life-history traits in the Glanville fritillary butterfly. Klemme I; Hanski I J Evol Biol; 2009 Sep; 22(9):1944-53. PubMed ID: 19702890 [TBL] [Abstract][Full Text] [Related]
14. From DNA to fitness differences: sequences and structures of adaptive variants of Colias phosphoglucose isomerase (PGI). Wheat CW; Watt WB; Pollock DD; Schulte PM Mol Biol Evol; 2006 Mar; 23(3):499-512. PubMed ID: 16292000 [TBL] [Abstract][Full Text] [Related]
15. Cytochrome P450 gene CYP337 and heritability of fitness traits in the Glanville fritillary butterfly. de Jong MA; Wong SC; Lehtonen R; Hanski I Mol Ecol; 2014 Apr; 23(8):1994-2005. PubMed ID: 24552294 [TBL] [Abstract][Full Text] [Related]
16. Temperature- and sex-related effects of serine protease alleles on larval development in the Glanville fritillary butterfly. Ahola V; Koskinen P; Wong SC; Kvist J; Paulin L; Auvinen P; Saastamoinen M; Frilander MJ; Lehtonen R; Hanski I J Evol Biol; 2015 Dec; 28(12):2224-35. PubMed ID: 26337146 [TBL] [Abstract][Full Text] [Related]
17. Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly. Wong SC; Oksanen A; Mattila AL; Lehtonen R; Niitepõld K; Hanski I J Insect Physiol; 2016 Feb; 85():23-31. PubMed ID: 26658138 [TBL] [Abstract][Full Text] [Related]
18. Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field. Niitepõld K; Smith AD; Osborne JL; Reynolds DR; Carreck NL; Martin AP; Marden JH; Ovaskainen O; Hanski I Ecology; 2009 Aug; 90(8):2223-32. PubMed ID: 19739384 [TBL] [Abstract][Full Text] [Related]
19. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes. Hanski I; Schulz T; Wong SC; Ahola V; Ruokolainen A; Ojanen SP Nat Commun; 2017 Feb; 8():14504. PubMed ID: 28211463 [TBL] [Abstract][Full Text] [Related]
20. Adaptation at specific loci. VII. Natural selection, dispersal and the diversity of molecular-functional variation patterns among butterfly species complexes (Colias: Lepidoptera, Pieridae). Watt WB; Wheat CW; Meyer EH; Martin JF Mol Ecol; 2003 May; 12(5):1265-75. PubMed ID: 12694289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]