BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 32896285)

  • 1. Machine learning-assisted enzyme engineering.
    Siedhoff NE; Schwaneberg U; Davari MD
    Methods Enzymol; 2020; 643():281-315. PubMed ID: 32896285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revolutionizing enzyme engineering through artificial intelligence and machine learning.
    Singh N; Malik S; Gupta A; Srivastava KR
    Emerg Top Life Sci; 2021 May; 5(1):113-125. PubMed ID: 33835131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges.
    Chen G; Shen Z; Iyer A; Ghumman UF; Tang S; Bi J; Chen W; Li Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PyPEF-An Integrated Framework for Data-Driven Protein Engineering.
    Siedhoff NE; Illig AM; Schwaneberg U; Davari MD
    J Chem Inf Model; 2021 Jul; 61(7):3463-3476. PubMed ID: 34260225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Progress in the application of artificial intelligence-assisted molecular modification of enzymes].
    Xu P; Wang W; Ning H; Cao R; Liu S; Fan P; Song X
    Sheng Wu Gong Cheng Xue Bao; 2024 Jun; 40(6):1728-1741. PubMed ID: 38914488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution.
    Ye L; Yang C; Yu H
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):559-567. PubMed ID: 29181567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Protein engineering: from directed evolution to computational design].
    Qu G; Zhu T; Jiang Y; Wu B; Sun Z
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1843-1856. PubMed ID: 31668033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering.
    Vanella R; Kovacevic G; Doffini V; Fernández de Santaella J; Nash MA
    Chem Commun (Camb); 2022 Feb; 58(15):2455-2467. PubMed ID: 35107442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Strategies in Protein Directed Evolution.
    Cadet XF; Gelly JC; van Noord A; Cadet F; Acevedo-Rocha CG
    Methods Mol Biol; 2022; 2461():225-275. PubMed ID: 35727454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning-assisted directed protein evolution with combinatorial libraries.
    Wu Z; Kan SBJ; Lewis RD; Wittmann BJ; Arnold FH
    Proc Natl Acad Sci U S A; 2019 Apr; 116(18):8852-8858. PubMed ID: 30979809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution for enzyme development in biocatalysis.
    Gargiulo S; Soumillion P
    Curr Opin Chem Biol; 2021 Apr; 61():107-113. PubMed ID: 33385931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design.
    Chica RA; Doucet N; Pelletier JN
    Curr Opin Biotechnol; 2005 Aug; 16(4):378-84. PubMed ID: 15994074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-driven strategies for the computational design of enzyme thermal stability: trends, perspectives, and prospects.
    Dou Z; Sun Y; Jiang X; Wu X; Li Y; Gong B; Wang L
    Acta Biochim Biophys Sin (Shanghai); 2023 Mar; 55(3):343-355. PubMed ID: 37143326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Screening Techniques for the Selection of Thermostable Enzymes.
    Li L; Liu X; Bai Y; Yao B; Luo H; Tu T
    J Agric Food Chem; 2024 Feb; 72(8):3833-3845. PubMed ID: 38285533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in ultrahigh-throughput screening for directed enzyme evolution.
    Markel U; Essani KD; Besirlioglu V; Schiffels J; Streit WR; Schwaneberg U
    Chem Soc Rev; 2020 Jan; 49(1):233-262. PubMed ID: 31815263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-learning-guided directed evolution for protein engineering.
    Yang KK; Wu Z; Arnold FH
    Nat Methods; 2019 Aug; 16(8):687-694. PubMed ID: 31308553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning to navigate fitness landscapes for protein engineering.
    Freschlin CR; Fahlberg SA; Romero PA
    Curr Opin Biotechnol; 2022 Jun; 75():102713. PubMed ID: 35413604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering proteinase K using machine learning and synthetic genes.
    Liao J; Warmuth MK; Govindarajan S; Ness JE; Wang RP; Gustafsson C; Minshull J
    BMC Biotechnol; 2007 Mar; 7():16. PubMed ID: 17386103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution 2.0: improving and deciphering enzyme properties.
    Cheng F; Zhu L; Schwaneberg U
    Chem Commun (Camb); 2015 Jun; 51(48):9760-72. PubMed ID: 25874672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.