These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32896323)

  • 1. Simultaneous measurement of turgor pressure and cell wall elasticity in growing pollen tubes.
    Vogler H; Burri JT; Nelson BJ; Grossniklaus U
    Methods Cell Biol; 2020; 160():297-310. PubMed ID: 32896323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pollen tube: a soft shell with a hard core.
    Vogler H; Draeger C; Weber A; Felekis D; Eichenberger C; Routier-Kierzkowska AL; Boisson-Dernier A; Ringli C; Nelson BJ; Smith RS; Grossniklaus U
    Plant J; 2013 Feb; 73(4):617-27. PubMed ID: 23106269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.
    Hu C; Munglani G; Vogler H; Ndinyanka Fabrice T; Shamsudhin N; Wittel FK; Ringli C; Grossniklaus U; Herrmann HJ; Nelson BJ
    Lab Chip; 2016 Dec; 17(1):82-90. PubMed ID: 27883138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massively Parallelized Pollen Tube Guidance and Mechanical Measurements on a Lab-on-a-Chip Platform.
    Shamsudhin N; Laeubli N; Atakan HB; Vogler H; Hu C; Haeberle W; Sebastian A; Grossniklaus U; Nelson BJ
    PLoS One; 2016; 11(12):e0168138. PubMed ID: 27977748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the micromechanics of the fastest growing plant cell - the pollen tube.
    Shamsudhin N; Atakan HB; Laubli N; Vogler H; Chengzhi Hu ; Sebastian A; Grossniklaus U; Nelson BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():461-464. PubMed ID: 28268371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeling the force: how pollen tubes deal with obstacles.
    Burri JT; Vogler H; Läubli NF; Hu C; Grossniklaus U; Nelson BJ
    New Phytol; 2018 Oct; 220(1):187-195. PubMed ID: 29905972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fountain streaming contributes to fast tip-growth through regulating the gradients of turgor pressure and concentration in pollen tubes.
    Liu S; Liu H; Feng S; Lin M; Xu F; Lu TJ
    Soft Matter; 2017 Apr; 13(16):2919-2927. PubMed ID: 28352884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes.
    Aouar L; Chebli Y; Geitmann A
    Sex Plant Reprod; 2010 Mar; 23(1):15-27. PubMed ID: 20165960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties.
    Zerzour R; Kroeger J; Geitmann A
    Dev Biol; 2009 Oct; 334(2):437-46. PubMed ID: 19666018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth.
    Kroeger JH; Zerzour R; Geitmann A
    PLoS One; 2011 Apr; 6(4):e18549. PubMed ID: 21541026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry.
    Geitmann A
    Sex Plant Reprod; 2010 Mar; 23(1):63-71. PubMed ID: 20165964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pollen tube invasive growth is promoted by callose.
    Kapoor K; Geitmann A
    Plant Reprod; 2023 Jun; 36(2):157-171. PubMed ID: 36717422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes.
    McKenna ST; Kunkel JG; Bosch M; Rounds CM; Vidali L; Winship LJ; Hepler PK
    Plant Cell; 2009 Oct; 21(10):3026-40. PubMed ID: 19861555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent symmetry frustration in pollen tubes.
    Pietruszka M; Lipowczan M; Geitmann A
    PLoS One; 2012; 7(11):e48087. PubMed ID: 23144847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Durotropic Growth of Pollen Tubes.
    Reimann R; Kah D; Mark C; Dettmer J; Reimann TM; Gerum RC; Geitmann A; Fabry B; Dietrich P; Kost B
    Plant Physiol; 2020 Jun; 183(2):558-569. PubMed ID: 32241878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis.
    Riglet L; Rozier F; Kodera C; Bovio S; Sechet J; Fobis-Loisy I; Gaude T
    Elife; 2020 Sep; 9():. PubMed ID: 32867920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the Young's modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC).
    Nezhad AS; Naghavi M; Packirisamy M; Bhat R; Geitmann A
    Lab Chip; 2013 Jul; 13(13):2599-608. PubMed ID: 23571308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically mediated mechanical expansion of the pollen tube cell wall.
    Rojas ER; Hotton S; Dumais J
    Biophys J; 2011 Oct; 101(8):1844-53. PubMed ID: 22004737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An osmotic model of the growing pollen tube.
    Hill AE; Shachar-Hill B; Skepper JN; Powell J; Shachar-Hill Y
    PLoS One; 2012; 7(5):e36585. PubMed ID: 22615784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense.
    Parre E; Geitmann A
    Planta; 2005 Feb; 220(4):582-92. PubMed ID: 15449057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.