BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32896327)

  • 1. User-friendly assessment of pavement cell shape features with PaCeQuant: Novel functions and tools.
    Poeschl Y; Möller B; Müller L; Bürstenbinder K
    Methods Cell Biol; 2020; 160():349-363. PubMed ID: 32896327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological Analysis of Leaf Epidermis Pavement Cells with PaCeQuant.
    Möller B; Poeschl Y; Klemm S; Bürstenbinder K
    Methods Mol Biol; 2019; 1992():329-349. PubMed ID: 31148049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics.
    Möller B; Poeschl Y; Plötner R; Bürstenbinder K
    Plant Physiol; 2017 Nov; 175(3):998-1017. PubMed ID: 28931626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ImageJ SurfCut: a user-friendly pipeline for high-throughput extraction of cell contours from 3D image stacks.
    Erguvan Ö; Louveaux M; Hamant O; Verger S
    BMC Biol; 2019 May; 17(1):38. PubMed ID: 31072374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Analysis of Microtubule Organization in Leaf Epidermis Pavement Cells.
    Klemm S; Buhl J; Möller B; Bürstenbinder K
    Methods Mol Biol; 2023; 2604():43-61. PubMed ID: 36773224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.
    Akita K; Kobayashi M; Sato M; Kutsuna N; Ueda T; Toyooka K; Nagata N; Hasezawa S; Higaki T
    Protoplasma; 2017 Jan; 254(1):367-377. PubMed ID: 26960821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.
    Elsner J; Lipowczan M; Kwiatkowska D
    Am J Bot; 2018 Feb; 105(2):257-265. PubMed ID: 29578288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells.
    Liu S; Jobert F; Rahneshan Z; Doyle SM; Robert S
    Annu Rev Plant Biol; 2021 Jun; 72():525-550. PubMed ID: 34143651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous Cellulase Switches Cell Interdigitation to Cell Elongation in an RIC1-dependent Manner in Arabidopsis thaliana Cotyledon Pavement Cells.
    Higaki T; Takigawa-Imamura H; Akita K; Kutsuna N; Kobayashi R; Hasezawa S; Miura T
    Plant Cell Physiol; 2017 Jan; 58(1):106-119. PubMed ID: 28011873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.
    Akita K; Higaki T; Kutsuna N; Hasezawa S
    Plant Signal Behav; 2015; 10(5):e1024396. PubMed ID: 26039484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Of puzzles and pavements: a quantitative exploration of leaf epidermal cell shape.
    Vőfély RV; Gallagher J; Pisano GD; Bartlett M; Braybrook SA
    New Phytol; 2019 Jan; 221(1):540-552. PubMed ID: 30281798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth Elongation of Pavement Cells Induced by RIC1 Overexpression Leads to Marginal Protrusions of the Cotyledon in Arabidopsis thaliana.
    Kikukawa K; Takigawa-Imamura H; Soga K; Kotake T; Higaki T
    Plant Cell Physiol; 2023 Dec; 64(11):1356-1371. PubMed ID: 37718531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.
    Majda M; Grones P; Sintorn IM; Vain T; Milani P; Krupinski P; Zagórska-Marek B; Viotti C; Jönsson H; Mellerowicz EJ; Hamant O; Robert S
    Dev Cell; 2017 Nov; 43(3):290-304.e4. PubMed ID: 29112850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why plants make puzzle cells, and how their shape emerges.
    Sapala A; Runions A; Routier-Kierzkowska AL; Das Gupta M; Hong L; Hofhuis H; Verger S; Mosca G; Li CB; Hay A; Hamant O; Roeder AH; Tsiantis M; Prusinkiewicz P; Smith RS
    Elife; 2018 Feb; 7():. PubMed ID: 29482719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics, geometry and genetics of epidermal cell shape regulation: different pieces of the same puzzle.
    Sapala A; Runions A; Smith RS
    Curr Opin Plant Biol; 2019 Feb; 47():1-8. PubMed ID: 30170216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pavement cells and the topology puzzle.
    Carter R; Sánchez-Corrales YE; Hartley M; Grieneisen VA; Marée AFM
    Development; 2017 Dec; 144(23):4386-4397. PubMed ID: 29084800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.
    Zhang C; Halsey LE; Szymanski DB
    BMC Plant Biol; 2011 Feb; 11():27. PubMed ID: 21284861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LSM-W
    Zubairova US; Verman PY; Oshchepkova PA; Elsukova AS; Doroshkov AV
    BMC Syst Biol; 2019 Mar; 13(Suppl 1):22. PubMed ID: 30836965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A network-based framework for shape analysis enables accurate characterization of leaf epidermal cells.
    Nowak J; Eng RC; Matz T; Waack M; Persson S; Sampathkumar A; Nikoloski Z
    Nat Commun; 2021 Jan; 12(1):458. PubMed ID: 33469016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. nPAsym: an open-source plugin for ImageJ to quantify nuclear shape asymmetry.
    Bozhok YM; Golovko O; Nikonenko AG
    Comput Methods Programs Biomed; 2020 Nov; 196():105562. PubMed ID: 32544781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.