These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32896330)

  • 1. Microfluidic systems for plant root imaging.
    Guichard M; Bertran Garcia de Olalla E; Stanley CE; Grossmann G
    Methods Cell Biol; 2020; 160():381-404. PubMed ID: 32896330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-flow-RootChip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels.
    Stanley CE; Shrivastava J; Brugman R; Heinzelmann E; van Swaay D; Grossmann G
    New Phytol; 2018 Feb; 217(3):1357-1369. PubMed ID: 29125191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RootChip: an integrated microfluidic chip for plant science.
    Grossmann G; Guo WJ; Ehrhardt DW; Frommer WB; Sit RV; Quake SR; Meier M
    Plant Cell; 2011 Dec; 23(12):4234-40. PubMed ID: 22186371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip.
    Grossmann G; Meier M; Cartwright HN; Sosso D; Quake SR; Ehrhardt DW; Frommer WB
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the Root Hair Morphology of Arabidopsis Seedlings in a Two-layer Microfluidic Platform.
    Aufrecht JA; Ryan JM; Hasim S; Allison DP; Nebenführ A; Doktycz MJ; Retterer ST
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28829431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-directional Dual-flow-RootChip for Physiological Analysis of Plant Primary Roots Under Asymmetric Perfusion of Stress Treatments.
    Allan C; Elliot B; Nock V; Meisrimler CN
    Bio Protoc; 2023 Aug; 13(15):e4764. PubMed ID: 37575387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and use of the dual-flow-RootChip for the imaging of
    Stanley CE; Shrivastava J; Brugman R; Heinzelmann E; Frajs V; Bühler A; van Swaay D; Grossmann G
    Bio Protoc; 2018 Sep; 8(18):e3010. PubMed ID: 34395800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis Root Microbiome Microfluidic (ARMM) Device for Imaging Bacterial Colonization and Morphogenesis of Arabidopsis Roots.
    Conway JM; Martinez PJ; Wilson ED; Del Risco NM; Dangl JL
    Methods Mol Biol; 2024; 2805():213-228. PubMed ID: 39008185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D-printed
    Moussus M; Meier M
    Lab Chip; 2021 Jun; 21(13):2557-2564. PubMed ID: 33999087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics-Based Bioassays and Imaging of Plant Cells.
    Yanagisawa N; Kozgunova E; Grossmann G; Geitmann A; Higashiyama T
    Plant Cell Physiol; 2021 Nov; 62(8):1239-1250. PubMed ID: 34027549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Imaging of Microbial Interactions With Tree Roots Using a Microfluidics Setup.
    Noirot-Gros MF; Shinde SV; Akins C; Johnson JL; Zerbs S; Wilton R; Kemner KM; Noirot P; Babnigg G
    Front Plant Sci; 2020; 11():408. PubMed ID: 32351525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live imaging of root-bacteria interactions in a microfluidics setup.
    Massalha H; Korenblum E; Malitsky S; Shapiro OH; Aharoni A
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4549-4554. PubMed ID: 28348235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic device and computational platform for high-throughput live imaging of gene expression.
    Busch W; Moore BT; Martsberger B; Mace DL; Twigg RW; Jung J; Pruteanu-Malinici I; Kennedy SJ; Fricke GK; Clark RL; Ohler U; Benfey PN
    Nat Methods; 2012 Nov; 9(11):1101-6. PubMed ID: 23023597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology.
    Lanquar V; Grossmann G; Vinkenborg JL; Merkx M; Thomine S; Frommer WB
    New Phytol; 2014 Apr; 202(1):198-208. PubMed ID: 24372442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An easy-to-build and re-usable microfluidic system for live-cell imaging.
    Babic J; Griscom L; Cramer J; Coudreuse D
    BMC Cell Biol; 2018 Jun; 19(1):8. PubMed ID: 29925307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying root-environment interactions in structured microdevices.
    Kaiser CF; Perilli A; Grossmann G; Meroz Y
    J Exp Bot; 2023 Jul; 74(13):3851-3863. PubMed ID: 37042515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Microfluidic-Like System (MLS) to Grow, Image, and Quantitatively Characterize Rigidity Sensing by Plant's Roots and Root Hair Cells.
    Pereira D; Alline T; Singh G; Chabouté ME; Asnacios A
    Methods Mol Biol; 2023; 2600():121-131. PubMed ID: 36587094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for root adaptation to a spatially discontinuous water availability in the absence of external water potential gradients.
    Lind KR; Siemianowski O; Yuan B; Sizmur T; VanEvery H; Banerjee S; Cademartiri L
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-flow RootChip enables quantification of bi-directional calcium signaling in primary roots.
    Allan C; Tayagui A; Hornung R; Nock V; Meisrimler CN
    Front Plant Sci; 2022; 13():1040117. PubMed ID: 36704158
    [No Abstract]   [Full Text] [Related]  

  • 20. Microfluidic perfusion culture.
    Hattori K; Sugiura S; Kanamori T
    Methods Mol Biol; 2014; 1104():251-63. PubMed ID: 24297421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.