BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32896761)

  • 21. A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9.
    Sun LC; Luo J; Mackey LV; Fuselier JA; Coy DH
    Cancer Lett; 2007 Feb; 246(1-2):157-66. PubMed ID: 16644105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer.
    Bandyopadhyay A; Wang L; López-Casillas F; Mendoza V; Yeh IT; Sun L
    Prostate; 2005 Apr; 63(1):81-90. PubMed ID: 15468171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The secreted matrix protein mindin increases prostate tumor progression and tumor-bone crosstalk via ERK 1/2 regulation.
    Ardura JA; Gutiérrez-Rojas I; Álvarez-Carrión L; Rodríguez-Ramos MR; Pozuelo JM; Alonso V
    Carcinogenesis; 2019 Jul; 40(7):828-839. PubMed ID: 31168562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cediranib/AZD2171 inhibits bone and brain metastasis in a preclinical model of advanced prostate cancer.
    Yin JJ; Zhang L; Munasinghe J; Linnoila RI; Kelly K
    Cancer Res; 2010 Nov; 70(21):8662-73. PubMed ID: 20959486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MiR-130b/TNF-α/NF-κB/VEGFA loop inhibits prostate cancer angiogenesis.
    Mu HQ; He YH; Wang SB; Yang S; Wang YJ; Nan CJ; Bao YF; Xie QP; Chen YH
    Clin Transl Oncol; 2020 Jan; 22(1):111-121. PubMed ID: 31667686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of interleukin 10 and transforming growth factor beta1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice.
    Stearns ME; Garcia FU; Fudge K; Rhim J; Wang M
    Clin Cancer Res; 1999 Mar; 5(3):711-20. PubMed ID: 10100726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion.
    Mehta PB; Jenkins BL; McCarthy L; Thilak L; Robson CN; Neal DE; Leung HY
    Oncogene; 2003 Mar; 22(9):1381-9. PubMed ID: 12618764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis.
    Li L; Ameri AH; Wang S; Jansson KH; Casey OM; Yang Q; Beshiri ML; Fang L; Lake RG; Agarwal S; Alilin AN; Xu W; Yin J; Kelly K
    Oncogene; 2019 Aug; 38(35):6241-6255. PubMed ID: 31312026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis of the effect of MMP-9 on the prostate bone metastasis: A review.
    Pego ER; Fernández I; Núñez MJ
    Urol Oncol; 2018 Jun; 36(6):272-282. PubMed ID: 29650324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vitro and In Vivo Antimetastatic Effects of ZSTK474 on Prostate Cancer DU145 Cells.
    Liu J; Tan X; Zhao W; Liu J; Xing X; Fan G; Zhang P; Zhang Z; Zhong Y; Kong D
    Curr Cancer Drug Targets; 2019; 19(4):321-329. PubMed ID: 30205797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment.
    Deryugina EI; Zajac E; Juncker-Jensen A; Kupriyanova TA; Welter L; Quigley JP
    Neoplasia; 2014 Oct; 16(10):771-88. PubMed ID: 25379015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Penta-O-galloyl-beta-D-glucose suppresses prostate cancer bone metastasis by transcriptionally repressing EGF-induced MMP-9 expression.
    Kuo PT; Lin TP; Liu LC; Huang CH; Lin JK; Kao JY; Way TD
    J Agric Food Chem; 2009 Apr; 57(8):3331-9. PubMed ID: 19320436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. KLF5 inhibits angiogenesis in PTEN-deficient prostate cancer by attenuating AKT activation and subsequent HIF1α accumulation.
    Ci X; Xing C; Zhang B; Zhang Z; Ni JJ; Zhou W; Dong JT
    Mol Cancer; 2015 Apr; 14():91. PubMed ID: 25896712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of aging on tumor growth and angiogenesis are tumor-cell dependent.
    Reed MJ; Karres N; Eyman D; Cruz A; Brekken RA; Plymate S
    Int J Cancer; 2007 Feb; 120(4):753-60. PubMed ID: 17131319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases.
    Sanchez-Sweatman OH; Orr FW; Singh G
    Invasion Metastasis; 1998-1999; 18(5-6):297-305. PubMed ID: 10729774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix.
    Collen A; Hanemaaijer R; Lupu F; Quax PH; van Lent N; Grimbergen J; Peters E; Koolwijk P; van Hinsbergh VW
    Blood; 2003 Mar; 101(5):1810-7. PubMed ID: 12393408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MMP inhibition in prostate cancer.
    Lokeshwar BL
    Ann N Y Acad Sci; 1999 Jun; 878():271-89. PubMed ID: 10415736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis].
    Fink K; Boratyński J
    Postepy Hig Med Dosw (Online); 2012 Sep; 66():609-28. PubMed ID: 23001203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pristimerin Inhibits Prostate Cancer Bone Metastasis by Targeting PC-3 Stem Cell Characteristics and VEGF-Induced Vasculogenesis of BM-EPCs.
    Huang S; He P; Peng X; Li J; Xu D; Tang Y
    Cell Physiol Biochem; 2015; 37(1):253-68. PubMed ID: 26302893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment.
    Zucker S; Cao J; Chen WT
    Oncogene; 2000 Dec; 19(56):6642-50. PubMed ID: 11426650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.