BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 32898445)

  • 1. Hybrid technologies for remediation of highly Pb contaminated soil: sewage sludge application and phytoremediation.
    Santos M; Melo VF; Monte Serrat B; Bonfleur E; Araújo EM; Cherobim VF
    Int J Phytoremediation; 2021; 23(3):328-335. PubMed ID: 32898445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clay mineralogy affects the efficiency of sewage sludge in reducing lead retention of soils.
    Poggere GC; Melo VF; Serrat BM; Mangrich AS; França AA; Corrêa RS; Barbosa JZ
    J Environ Sci (China); 2019 Jun; 80():45-57. PubMed ID: 30952351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of phytoremediation capability of French marigold (
    Biswal B; Singh SK; Patra A; Mohapatra KK
    Int J Phytoremediation; 2022; 24(9):945-954. PubMed ID: 34634952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of compaction on lead availability in contaminated soils with contrasting texture.
    de Campos AKR; Cavalieri-Polizeli KMV; Melo VF
    Environ Monit Assess; 2020 Oct; 192(11):672. PubMed ID: 33009971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.
    Grobelak A; Napora A
    PLoS One; 2015; 10(6):e0129538. PubMed ID: 26115341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passivation and remediation of Pb and Cr in contaminated soil by sewage sludge biochar tubule.
    Chen L; Ni Q; Wu Y; Fu C; Ping W; Bai H; Li M; Huang H; Liu H
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):49102-49111. PubMed ID: 33934302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil.
    Kroulíková S; Mohnke S; Wenzel WW; Tejnecký V; Száková J; Mercl F; Tlustoš P
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20866-20878. PubMed ID: 31111391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chelant extraction of heavy metals from contaminated soils.
    Peters RW
    J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of sequential extraction to assess the influence of sewage sludge amendment on metal mobility in Chilean soils.
    Ahumada I; Escudero P; Carrasco MA; Castillo G; Ascar L; Fuentes E
    J Environ Monit; 2004 Apr; 6(4):327-34. PubMed ID: 15054542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.
    Lum AF; Ngwa ES; Chikoye D; Suh CE
    Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities.
    Theodoratos P; Moirou A; Xenidis A; Paspaliaris I
    J Hazard Mater; 2000 Oct; 77(1-3):177-91. PubMed ID: 10946127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay.
    Shaheen SM; Wang J; Swertz AC; Feng X; Bolan N; Rinklebe J
    Environ Pollut; 2019 May; 248():1059-1066. PubMed ID: 31091638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field.
    Attinti R; Barrett KR; Datta R; Sarkar D
    Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.).
    Li FL; Qiu Y; Xu X; Yang F; Wang Z; Feng J; Wang J
    Ecotoxicol Environ Saf; 2020 Mar; 191():110185. PubMed ID: 31986455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization mechanism of Pb with an amino- and mercapto-polymer to assist phytoremediation.
    Li F; Yang B; Yang F; Wu J; Chen J; Song S; Jia J
    J Hazard Mater; 2023 Jan; 442():130139. PubMed ID: 36303361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.).
    Paz-Alberto AM; Sigua GC; Baui BG; Prudente JA
    Environ Sci Pollut Res Int; 2007 Nov; 14(7):498-504. PubMed ID: 18062482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of phytoremediation on soil polluted by heavy metals from sewage sludge.
    Mesbahi N; Ali O; Ali Ahmed Sadoudi D; Ouidir O
    Int J Phytoremediation; 2023; 25(8):997-1013. PubMed ID: 36190109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ryegrass extraction of heavy metals from municipal sewage sludge compost-amended soils assisted with citric acid.
    Li F; Chen X; Feng J; Liang Z; Xu X; Ding T
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):33598-33608. PubMed ID: 36484942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of selected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region, Southern Italy.
    Farrag K; Senesi N; Rovira PS; Brunetti G
    Environ Monit Assess; 2012 Nov; 184(11):6593-606. PubMed ID: 22083403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.