These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 32898545)
1. Tailorable hydrogel of gelatin with silk fibroin and its activation/crosslinking for enhanced proliferation of fibroblast cells. Kulkarni G; Guha Ray P; Byram PK; Kaushal M; Dhara S; Das S Int J Biol Macromol; 2020 Dec; 164():4073-4083. PubMed ID: 32898545 [TBL] [Abstract][Full Text] [Related]
2. Gelatin modified ultrathin silk fibroin films for enhanced proliferation of cells. Yang L; Yaseen M; Zhao X; Coffey P; Pan F; Wang Y; Xu H; Webster J; Lu JR Biomed Mater; 2015 Mar; 10(2):025003. PubMed ID: 25784671 [TBL] [Abstract][Full Text] [Related]
3. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]
4. Biocompatibility of silk methacrylate/gelatin-methacryloyl composite hydrogel and its feasibility as a vascular tissue engineering scaffold. Shi X; Wang X; Shen W; Yue W Biochem Biophys Res Commun; 2023 Apr; 650():62-72. PubMed ID: 36773341 [TBL] [Abstract][Full Text] [Related]
5. A multi-interpenetrating network (IPN) hydrogel with gelatin and silk fibroin. Park S; Edwards S; Hou S; Boudreau R; Yee R; Jeong KJ Biomater Sci; 2019 Mar; 7(4):1276-1280. PubMed ID: 30672521 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and Characterization of Silk Fibroin-Based Nanofibrous Scaffolds Supplemented with Gelatin for Corneal Tissue Engineering. Sahi AK; Varshney N; Poddar S; Gundu S; Mahto SK Cells Tissues Organs; 2021; 210(3):173-194. PubMed ID: 34252899 [TBL] [Abstract][Full Text] [Related]
7. Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts. Orlova AA; Kotlyarova MS; Lavrenov VS; Volkova SV; Arkhipova AY Bull Exp Biol Med; 2014 Nov; 158(1):88-91. PubMed ID: 25403405 [TBL] [Abstract][Full Text] [Related]
8. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application. Hajiabbas M; Alemzadeh I; Vossoughi M Carbohydr Polym; 2020 Oct; 245():116465. PubMed ID: 32718603 [TBL] [Abstract][Full Text] [Related]
9. Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches. Xiao W; Li J; Qu X; Wang L; Tan Y; Li K; Li H; Yue X; Li B; Liao X Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():57-67. PubMed ID: 30889731 [TBL] [Abstract][Full Text] [Related]
12. Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Lu Q; Zhang X; Hu X; Kaplan DL Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684 [TBL] [Abstract][Full Text] [Related]
13. Soft-matrices based on silk fibroin and alginate for tissue engineering. Silva R; Singh R; Sarker B; Papageorgiou DG; Juhasz JA; Roether JA; Cicha I; Kaschta J; Schubert DW; Chrissafis K; Detsch R; Boccaccini AR Int J Biol Macromol; 2016 Dec; 93(Pt B):1420-1431. PubMed ID: 27156697 [TBL] [Abstract][Full Text] [Related]
14. Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility. Gisbert Roca F; Lozano Picazo P; Pérez-Rigueiro J; Guinea Tortuero GV; Monleón Pradas M; Martínez-Ramos C Int J Biol Macromol; 2020 Apr; 148():378-390. PubMed ID: 31954793 [TBL] [Abstract][Full Text] [Related]
15. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Chomchalao P; Pongcharoen S; Sutheerawattananonda M; Tiyaboonchai W Biomed Eng Online; 2013 Apr; 12():28. PubMed ID: 23566031 [TBL] [Abstract][Full Text] [Related]
16. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wongputtaraksa T; Ratanavaraporn J; Pichyangkura R; Damrongsakkul S J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2307-15. PubMed ID: 23015285 [TBL] [Abstract][Full Text] [Related]
17. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796 [TBL] [Abstract][Full Text] [Related]
18. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications. Asadpour S; Kargozar S; Moradi L; Ai A; Nosrati H; Ai J Int J Biol Macromol; 2020 Jul; 154():1285-1294. PubMed ID: 31733251 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Wang S; Zhang Y; Wang H; Yin G; Dong Z Biomacromolecules; 2009 Aug; 10(8):2240-4. PubMed ID: 19722559 [TBL] [Abstract][Full Text] [Related]
20. Amorphous Silk Fibroin Nanofiber Hydrogels with Enhanced Mechanical Properties. Liu J; Ding Z; Lu G; Wang J; Wang L; Lu Q Macromol Biosci; 2019 Dec; 19(12):e1900326. PubMed ID: 31738015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]