These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 32898545)
21. Phospholipid-induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration. Laomeephol C; Guedes M; Ferreira H; Reis RL; Kanokpanont S; Damrongsakkul S; Neves NM J Tissue Eng Regen Med; 2020 Jan; 14(1):160-172. PubMed ID: 31671250 [TBL] [Abstract][Full Text] [Related]
22. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Hasturk O; Jordan KE; Choi J; Kaplan DL Biomaterials; 2020 Feb; 232():119720. PubMed ID: 31896515 [TBL] [Abstract][Full Text] [Related]
23. Balanced electrostatic blending approach--an alternative to chemical crosslinking of Thai silk fibroin/gelatin scaffold. Jetbumpenkul P; Amornsudthiwat P; Kanokpanont S; Damrongsakkul S Int J Biol Macromol; 2012 Jan; 50(1):7-13. PubMed ID: 21983026 [TBL] [Abstract][Full Text] [Related]
24. Injectable Ultrasonication-Induced Silk Fibroin Hydrogel for Cartilage Repair and Regeneration. Yuan T; Li Z; Zhang Y; Shen K; Zhang X; Xie R; Liu F; Fan W Tissue Eng Part A; 2021 Sep; 27(17-18):1213-1224. PubMed ID: 33353462 [TBL] [Abstract][Full Text] [Related]
25. Silk fibroin biohydrogel composites for loading and ordered release of multiple active ingredients with enhanced bioactivity. Liu F; Deng M; Li J; Zhang Z; Deng Y; Lv L; Li Y; Du H; Zhang C; Li J; Wang B Int J Biol Macromol; 2024 Aug; 275(Pt 2):133251. PubMed ID: 38945708 [TBL] [Abstract][Full Text] [Related]
26. Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Xiao W; He J; Nichol JW; Wang L; Hutson CB; Wang B; Du Y; Fan H; Khademhosseini A Acta Biomater; 2011 Jun; 7(6):2384-93. PubMed ID: 21295165 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of protease XIV-loaded microspheres for cell spreading in silk fibroin hydrogels. Xiao W; Zhang J; Qu X; Chen K; Gao H; He J; Ma T; Li B; Liao X J Mater Sci Mater Med; 2020 Nov; 31(12):128. PubMed ID: 33247786 [TBL] [Abstract][Full Text] [Related]
28. Fabrication and characterization of silk microfiber-reinforced methacrylated gelatin hydrogel with turnable properties. Xiao W; Tan Y; Li J; Gu C; Li H; Li B; Liao X J Biomater Sci Polym Ed; 2018 Dec; 29(17):2068-2082. PubMed ID: 29943690 [TBL] [Abstract][Full Text] [Related]
29. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Buitrago JO; Patel KD; El-Fiqi A; Lee JH; Kundu B; Lee HH; Kim HW Acta Biomater; 2018 Mar; 69():218-233. PubMed ID: 29410166 [TBL] [Abstract][Full Text] [Related]
30. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering. Zhou H; Wang Z; Cao H; Hu H; Luo Z; Yang X; Cui M; Zhou L J Biomater Sci Polym Ed; 2019 Dec; 30(17):1604-1619. PubMed ID: 31438806 [TBL] [Abstract][Full Text] [Related]
32. Enzymatically crosslinked and mechanically tunable silk fibroin/pullulan hydrogels for mesenchymal stem cells delivery. Li T; Song X; Weng C; Wang X; Wu J; Sun L; Gong X; Zeng WN; Yang L; Chen C Int J Biol Macromol; 2018 Aug; 115():300-307. PubMed ID: 29665386 [TBL] [Abstract][Full Text] [Related]
33. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
34. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Luetchford KA; Chaudhuri JB; De Bank PA Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110116. PubMed ID: 31753329 [TBL] [Abstract][Full Text] [Related]
35. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
36. Raman spectroscopy assisted biochemical evaluation of L929 fibroblast cells on differentially crosslinked gelatin hydrogels. Kulkarni G; Guha Ray P; Das S; Biswas S; Dhara S; Das S Spectrochim Acta A Mol Biomol Spectrosc; 2021 Aug; 257():119760. PubMed ID: 33892247 [TBL] [Abstract][Full Text] [Related]
37. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink. Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370 [TBL] [Abstract][Full Text] [Related]
38. Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Gil ES; Frankowski DJ; Spontak RJ; Hudson SM Biomacromolecules; 2005; 6(6):3079-87. PubMed ID: 16283730 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Kandhasamy S; Arthi N; Arun RP; Verma RS Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050 [TBL] [Abstract][Full Text] [Related]
40. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]