BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32898640)

  • 1. Fragmented mitochondrial genomes evolved in opposite directions between closely related macaque louse Pedicinus obtusus and colobus louse Pedicinus badii.
    Fu YT; Dong Y; Wang W; Nie Y; Liu GH; Shao R
    Genomics; 2020 Nov; 112(6):4924-4933. PubMed ID: 32898640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mitochondrial Genome of the Guanaco Louse, Microthoracius praelongiceps: Insights into the Ancestral Mitochondrial Karyotype of Sucking Lice (Anoplura, Insecta).
    Shao R; Li H; Barker SC; Song S
    Genome Biol Evol; 2017 Feb; 9(2):431-445. PubMed ID: 28164215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragmented mitochondrial genomes of seal lice (family Echinophthiriidae) and gorilla louse (family Pthiridae): frequent minichromosomal splits and a host switch of lice between seals.
    Dong Y; Zhao M; Shao R
    BMC Genomics; 2022 Apr; 23(1):283. PubMed ID: 35395774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta).
    Shao R; Barker SC; Li H; Song S; Poudel S; Su Y
    Sci Rep; 2015 Nov; 5():17389. PubMed ID: 26617060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragmented mitochondrial genomes are present in both major clades of the blood-sucking lice (suborder Anoplura): evidence from two Hoplopleura rodent lice (family Hoplopleuridae).
    Dong WG; Song S; Guo XG; Jin DC; Yang Q; Barker SC; Shao R
    BMC Genomics; 2014 Sep; 15(1):751. PubMed ID: 25179395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substantial variation in the extent of mitochondrial genome fragmentation among blood-sucking lice of mammals.
    Jiang H; Barker SC; Shao R
    Genome Biol Evol; 2013; 5(7):1298-308. PubMed ID: 23781098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrigendum to 'Fragmented mitochondrial genomes evolved in opposite directions between closely related macaque louse Pedicinus obtusus and colobus louse Pedicinus badii'.
    Fu YT; Dong Y; Wang W; Nie Y; Liu GH; Shao R
    Genomics; 2021 Mar; 113(2):727. PubMed ID: 33549956
    [No Abstract]   [Full Text] [Related]  

  • 8. Frequent tRNA gene translocation towards the boundaries with control regions contributes to the highly dynamic mitochondrial genome organization of the parasitic lice of mammals.
    Dong WG; Dong Y; Guo XG; Shao R
    BMC Genomics; 2021 Aug; 22(1):598. PubMed ID: 34362306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable microsatellite loci for population genetic analysis of Old World monkey lice (Pedicinus sp.).
    Scholl K; Allen JM; Leendertz FH; Chapman CA; Reed DL
    J Parasitol; 2012 Oct; 98(5):930-7. PubMed ID: 22509906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Mitochondrial Genome Fragmentation Pattern in the Buffalo Louse
    Fu YT; Suleman ; Yao C; Wang HM; Wang W; Liu GH
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in mitochondrial minichromosome composition between blood-sucking lice of the genus Haematopinus that infest horses and pigs.
    Song SD; Barker SC; Shao R
    Parasit Vectors; 2014 Mar; 7():144. PubMed ID: 24690192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitochondrial genome of the chimpanzee louse, Pediculus schaeffi: insights into the process of mitochondrial genome fragmentation in the blood-sucking lice of great apes.
    Herd KE; Barker SC; Shao R
    BMC Genomics; 2015 Sep; 16(1):661. PubMed ID: 26335315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation of mitochondrial minichromosome composition in Hoplopleura lice (Phthiraptera: Hoplopleuridae) from rats.
    Fu YT; Nie Y; Duan DY; Liu GH
    Parasit Vectors; 2020 Oct; 13(1):506. PubMed ID: 33023651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragmented mitochondrial genomes of the rat lice, Polyplax asiatica and Polyplax spinulosa: intra-genus variation in fragmentation pattern and a possible link between the extent of fragmentation and the length of life cycle.
    Dong WG; Song S; Jin DC; Guo XG; Shao R
    BMC Genomics; 2014 Jan; 15():44. PubMed ID: 24438034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Genome Fragmentation Unites the Parasitic Lice of Eutherian Mammals.
    Song F; Li H; Liu GH; Wang W; James P; Colwell DD; Tran A; Gong S; Cai W; Shao R
    Syst Biol; 2019 May; 68(3):430-440. PubMed ID: 30239978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of extensively fragmented mitochondrial genomes in the lice of humans.
    Shao R; Zhu XQ; Barker SC; Herd K
    Genome Biol Evol; 2012; 4(11):1088-101. PubMed ID: 23042553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Species of Sucking Louse from the Mandrill from Gabon with a Review of Host Associations and Geographical Distributions, and Identification Keys to Members of the Genus pedicinus (Phthiraptera: Anoplura: Pedicinidae).
    Durden LA; Kessler SE; Boundenga L; Ngoubangoye B; Tsoumbou TA; Moussadji-Kinga CI; Halbwax M; Setchell JM; Nichols J; Greiman SE
    J Parasitol; 2020 Apr; 106(2):221-232. PubMed ID: 32164028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal endocellular symbiotic bacterium of the macaque louse Pedicinus obtusus: Distinct endosymbiont origins in anthropoid primate lice and the old world monkey louse.
    Fukatsu T; Hosokawa T; Koga R; Nikoh N; Kato T; Hayama S; Takefushi H; Tanaka I
    Appl Environ Microbiol; 2009 Jun; 75(11):3796-9. PubMed ID: 19304816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus.
    Shao R; Kirkness EF; Barker SC
    Genome Res; 2009 May; 19(5):904-12. PubMed ID: 19336451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroplasmy in the mitochondrial genomes of human lice and ticks revealed by high throughput sequencing.
    Xiong H; Barker SC; Burger TD; Raoult D; Shao R
    PLoS One; 2013; 8(9):e73329. PubMed ID: 24058467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.