BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 32898647)

  • 1. Advances in characterization of SIRT3 deacetylation targets in mitochondrial function.
    Wang S; Zhang J; Deng X; Zhao Y; Xu K
    Biochimie; 2020 Dec; 179():1-13. PubMed ID: 32898647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sirtuin 3: Emerging therapeutic target for cardiovascular diseases.
    Cao M; Zhao Q; Sun X; Qian H; Lyu S; Chen R; Xia H; Yuan W
    Free Radic Biol Med; 2022 Feb; 180():63-74. PubMed ID: 35031448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3.
    Kwon S; Seok S; Yau P; Li X; Kemper B; Kemper JK
    J Biol Chem; 2017 Oct; 292(42):17312-17323. PubMed ID: 28808064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and Characterization of Sirtuin3 (SIRT3).
    Man AW; Bai B; Wang Y
    Methods Mol Biol; 2016; 1436():201-11. PubMed ID: 27246217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target.
    Zhang J; Xiang H; Liu J; Chen Y; He RR; Liu B
    Theranostics; 2020; 10(18):8315-8342. PubMed ID: 32724473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-195 Regulates Metabolism in Failing Myocardium Via Alterations in Sirtuin 3 Expression and Mitochondrial Protein Acetylation.
    Zhang X; Ji R; Liao X; Castillero E; Kennel PJ; Brunjes DL; Franz M; Möbius-Winkler S; Drosatos K; George I; Chen EI; Colombo PC; Schulze PC
    Circulation; 2018 May; 137(19):2052-2067. PubMed ID: 29330215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart.
    Sack MN
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2191-7. PubMed ID: 21984547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.
    Sol EM; Wagner SA; Weinert BT; Kumar A; Kim HS; Deng CX; Choudhary C
    PLoS One; 2012; 7(12):e50545. PubMed ID: 23236377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis.
    Zhang Y; Wen P; Luo J; Ding H; Cao H; He W; Zen K; Zhou Y; Yang J; Jiang L
    Cell Death Dis; 2021 Sep; 12(9):847. PubMed ID: 34518519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SENP1-Sirt3 Signaling Controls Mitochondrial Protein Acetylation and Metabolism.
    Wang T; Cao Y; Zheng Q; Tu J; Zhou W; He J; Zhong J; Chen Y; Wang J; Cai R; Zuo Y; Wei B; Fan Q; Yang J; Wu Y; Yi J; Li D; Liu M; Wang C; Zhou A; Li Y; Wu X; Yang W; Chin YE; Chen G; Cheng J
    Mol Cell; 2019 Aug; 75(4):823-834.e5. PubMed ID: 31302001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer.
    Chen Y; Fu LL; Wen X; Wang XY; Liu J; Cheng Y; Huang J
    Cell Death Dis; 2014 Feb; 5(2):e1047. PubMed ID: 24503539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance.
    Liu R; Fan M; Candas D; Qin L; Zhang X; Eldridge A; Zou JX; Zhang T; Juma S; Jin C; Li RF; Perks J; Sun LQ; Vaughan AT; Hai CX; Gius DR; Li JJ
    Mol Cancer Ther; 2015 Sep; 14(9):2090-102. PubMed ID: 26141949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of mitochondrial F(o)F(1)ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977bp deletion of mitochondrial DNA.
    Wu YT; Lee HC; Liao CC; Wei YH
    Biochim Biophys Acta; 2013 Jan; 1832(1):216-27. PubMed ID: 23046812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization.
    Yang W; Nagasawa K; Münch C; Xu Y; Satterstrom K; Jeong S; Hayes SD; Jedrychowski MP; Vyas FS; Zaganjor E; Guarani V; Ringel AE; Gygi SP; Harper JW; Haigis MC
    Cell; 2016 Nov; 167(4):985-1000.e21. PubMed ID: 27881304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging.
    Sack MN
    J Mol Cell Cardiol; 2012 Mar; 52(3):520-5. PubMed ID: 22119802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of histone deacetylase Sirt3 in the development and regression of atherosclerosis.
    Liu Y; Shen X; Pang M; Sun Z; Qian Y; Xue W; Wang Z; Li L
    Life Sci; 2021 May; 272():119178. PubMed ID: 33610576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress.
    Samant SA; Zhang HJ; Hong Z; Pillai VB; Sundaresan NR; Wolfgeher D; Archer SL; Chan DC; Gupta MP
    Mol Cell Biol; 2014 Mar; 34(5):807-19. PubMed ID: 24344202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3.
    Parodi-Rullán RM; Chapa-Dubocq XR; Javadov S
    Front Physiol; 2018; 9():1094. PubMed ID: 30131726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIRT3 Overexpression Inhibits Growth of Kidney Tumor Cells and Enhances Mitochondrial Biogenesis.
    Liu H; Li S; Liu X; Chen Y; Deng H
    J Proteome Res; 2018 Sep; 17(9):3143-3152. PubMed ID: 30095923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.
    Hirschey MD; Shimazu T; Goetzman E; Jing E; Schwer B; Lombard DB; Grueter CA; Harris C; Biddinger S; Ilkayeva OR; Stevens RD; Li Y; Saha AK; Ruderman NB; Bain JR; Newgard CB; Farese RV; Alt FW; Kahn CR; Verdin E
    Nature; 2010 Mar; 464(7285):121-5. PubMed ID: 20203611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.