BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32899114)

  • 1. A Self-Powered Biosensor for the Detection of Glutathione.
    Roy BG; Rutherford JL; Weaver AE; Beaver K; Rasmussen M
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32899114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.
    Kulkarni T; Slaughter G
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():5-8. PubMed ID: 29059797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing.
    Becker JM; Lielpetere A; Szczesny J; Bichon S; Gounel S; Mano N; Schuhmann W
    Bioelectrochemistry; 2023 Feb; 149():108314. PubMed ID: 36335789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Tuning of the Electrocatalytic Nanobiointerface for a "Turn-Off" Biofuel-Cell-Based Self-Powered Biosensor for p53 Protein.
    Han Y; Chabu JM; Hu S; Deng L; Liu YN; Guo S
    Chemistry; 2015 Sep; 21(37):13045-51. PubMed ID: 26211519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices.
    Li S; Wang Y; Ge S; Yu J; Yan M
    Biosens Bioelectron; 2015 Sep; 71():18-24. PubMed ID: 25880834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.
    Slaughter G; Kulkarni T
    Sci Rep; 2017 May; 7(1):1471. PubMed ID: 28469179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout.
    Pinyou P; Conzuelo F; Sliozberg K; Vivekananthan J; Contin A; Pöller S; Plumeré N; Schuhmann W
    Bioelectrochemistry; 2015 Dec; 106(Pt A):22-7. PubMed ID: 25892686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.
    Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F
    Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth.
    Yin S; Jin Z; Miyake T
    Biosens Bioelectron; 2019 Sep; 141():111471. PubMed ID: 31252257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.
    Babadi AA; Bagheri S; Hamid SB
    Biosens Bioelectron; 2016 May; 79():850-60. PubMed ID: 26785309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase.
    Tsujimura S
    Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starchy biomass-powered enzymatic biofuel cell based on amylases and glucose oxidase multi-immobilized bioanode.
    Yamamoto K; Matsumoto T; Shimada S; Tanaka T; Kondo A
    N Biotechnol; 2013 Jun; 30(5):531-5. PubMed ID: 23624306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rechargeable, flexible and mediator-free biosupercapacitor based on transparent ITO nanoparticle modified electrodes acting in µM glucose containing buffers.
    Bobrowski T; González Arribas E; Ludwig R; Toscano MD; Shleev S; Schuhmann W
    Biosens Bioelectron; 2018 Mar; 101():84-89. PubMed ID: 29049946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An implantable biofuel cell for a live insect.
    Rasmussen M; Ritzmann RE; Lee I; Pollack AJ; Scherson D
    J Am Chem Soc; 2012 Jan; 134(3):1458-60. PubMed ID: 22239249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.
    Fischer C; Fraiwan A; Choi S
    Biosens Bioelectron; 2016 May; 79():193-7. PubMed ID: 26706941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Powered Detection of Glucose by Enzymatic Glucose/Oxygen Fuel Cells on Printed Circuit Boards.
    Gonzalez-Solino C; Bernalte E; Bayona Royo C; Bennett R; Leech D; Di Lorenzo M
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26704-26711. PubMed ID: 34038080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual distance readout to display the level of energy generation in paper-based biofuel cells: application to enzymatic sensing of glucose.
    Wang Y; Zhang L; Zhao P; Ge S; Yan M; Yu J
    Mikrochim Acta; 2019 Apr; 186(5):283. PubMed ID: 30989340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow-Channel Paper Analytical Devices Supported Biofuel Cell-Based Self-Powered Molecularly Imprinted Polymer Sensor for Pesticide Detection.
    Wang Y; Shi H; Sun J; Xu J; Yang M; Yu J
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic biofuel cell based on anode and cathode powered by ethanol.
    Ramanavicius A; Kausaite A; Ramanaviciene A
    Biosens Bioelectron; 2008 Dec; 24(4):767-72. PubMed ID: 18693008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance paper-based biocathode fabricated by screen-printing an improved mesoporous carbon ink and by oriented immobilization of bilirubin oxidase.
    Loew N; Shitanda I; Goto H; Watanabe H; Mikawa T; Tsujimura S; Itagaki M
    Sci Rep; 2022 Aug; 12(1):14649. PubMed ID: 36030337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.