These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3289913)

  • 1. Opportunities for improving techniques for interspecies extrapolation in the risk assessment process.
    Gibson JE; Starr TB
    Environ Health Perspect; 1988 Apr; 77():99-105. PubMed ID: 3289913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The linearized multistage model and the future of quantitative risk assessment.
    Crump KS
    Hum Exp Toxicol; 1996 Oct; 15(10):787-98. PubMed ID: 8906427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue dosimetry, physiologically-based pharmacokinetic modeling, and cancer risk assessment.
    Andersen ME
    Cell Biol Toxicol; 1989 Dec; 5(4):405-15. PubMed ID: 2627676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biologically based modeling in toxicology research.
    Andersen ME; Krishnan K; Conolly RB; McClellan RO
    Arch Toxicol Suppl; 1992; 15():217-27. PubMed ID: 1510591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical factors in assessing risk from exposure to nasal carcinogens.
    Bogdanffy MS; Mathison BH; Kuykendall JR; Harman AE
    Mutat Res; 1997 Oct; 380(1-2):125-41. PubMed ID: 9385394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic bioassays: relevance to quantitative risk assessment of carcinogens.
    Rieth JP; Starr TB
    Regul Toxicol Pharmacol; 1989 Oct; 10(2):160-73. PubMed ID: 2813869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Needs for biological risk assessment in interspecies extrapolation.
    Clayson DB
    Environ Health Perspect; 1988 Apr; 77():93-7. PubMed ID: 3289912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High- to low-dose extrapolation: critical determinants involved in the dose response of carcinogenic substances.
    Swenberg JA; Richardson FC; Boucheron JA; Deal FH; Belinsky SA; Charbonneau M; Short BG
    Environ Health Perspect; 1987 Dec; 76():57-63. PubMed ID: 3447904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic and toxicokinetic data reducing uncertainty in risk assessment.
    Greim H
    Toxicol Lett; 2003 Feb; 138(1-2):1-8. PubMed ID: 12559689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-of-action framework for evaluating the relevance of rodent forestomach tumors in cancer risk assessment.
    Proctor DM; Gatto NM; Hong SJ; Allamneni KP
    Toxicol Sci; 2007 Aug; 98(2):313-26. PubMed ID: 17426108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of risk assessment for determining the safety of chemicals: recent assessment of residual solvents in drugs and di(2-ethylhexyl) phthalate.
    Hasegawa R; Koizumi M; Hirose A
    Congenit Anom (Kyoto); 2004 Jun; 44(2):51-9. PubMed ID: 15198717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interspecies comparisons of tissue DNA damage, repair, fixation, and replication.
    Slaga TJ
    Environ Health Perspect; 1988 Apr; 77():73-82. PubMed ID: 3289910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations.
    Dearfield KL; Gollapudi BB; Bemis JC; Benz RD; Douglas GR; Elespuru RK; Johnson GE; Kirkland DJ; LeBaron MJ; Li AP; Marchetti F; Pottenger LH; Rorije E; Tanir JY; Thybaud V; van Benthem J; Yauk CL; Zeiger E; Luijten M
    Environ Mol Mutagen; 2017 Jun; 58(5):264-283. PubMed ID: 27650663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative risk assessment and the limitations of the linearized multistage model.
    Lovell DP; Thomas G
    Hum Exp Toxicol; 1996 Feb; 15(2):87-104. PubMed ID: 8645508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologically based pharmacokinetics and cancer risk assessment.
    Andersen ME; Krishnan K
    Environ Health Perspect; 1994 Jan; 102 Suppl 1(Suppl 1):103-8. PubMed ID: 8187697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.