BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32899200)

  • 41. Tumor Identification in Colorectal Histology Images Using a Convolutional Neural Network.
    Yoon H; Lee J; Oh JE; Kim HR; Lee S; Chang HJ; Sohn DK
    J Digit Imaging; 2019 Feb; 32(1):131-140. PubMed ID: 30066123
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks.
    Vakli P; Deák-Meszlényi RJ; Hermann P; Vidnyánszky Z
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30395218
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intelligent microscopic approach for identification and recognition of citrus deformities.
    Safdar A; Khan MA; Shah JH; Sharif M; Saba T; Rehman A; Javed K; Khan JA
    Microsc Res Tech; 2019 Sep; 82(9):1542-1556. PubMed ID: 31209970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Apple Leaf Diseases Recognition Based on An Improved Convolutional Neural Network.
    Yan Q; Yang B; Wang W; Wang B; Chen P; Zhang J
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580395
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DeepCorrect: Correcting DNN Models Against Image Distortions.
    Borkar TS; Karam LJ
    IEEE Trans Image Process; 2019 Dec; 28(12):6022-6034. PubMed ID: 31251188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye.
    Cheng X; Ren Y; Cheng K; Cao J; Hao Q
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32370162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Multiscale Lightweight and Efficient Model Based on YOLOv7: Applied to Citrus Orchard.
    Chen J; Liu H; Zhang Y; Zhang D; Ouyang H; Chen X
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501301
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatic Fuzzy Logic-Based Maize Common Rust Disease Severity Predictions with Thresholding and Deep Learning.
    Sibiya M; Sumbwanyambe M
    Pathogens; 2021 Jan; 10(2):. PubMed ID: 33525312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plant diseases and pests detection based on deep learning: a review.
    Liu J; Wang X
    Plant Methods; 2021 Feb; 17(1):22. PubMed ID: 33627131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN).
    Agnes SA; Anitha J; Pandian SIA; Peter JD
    J Med Syst; 2019 Dec; 44(1):30. PubMed ID: 31838610
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment.
    Ghiani L; Sassu A; Palumbo F; Mercenaro L; Gambella F
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34198844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data.
    Gebrehiwot A; Hashemi-Beni L; Thompson G; Kordjamshidi P; Langan TE
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Development of citrus yield prediction model based on airborne hyperspectral imaging].
    Ye XJ; Kenshi S; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1295-300. PubMed ID: 20672621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hierarchical Pruning for Simplification of Convolutional Neural Networks in Diabetic Retinopathy Classification.
    Hajabdollahi M; Esfandiarpoor R; Najarian K; Karimi N; Samavi S; Reza Soroushmehr SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():970-973. PubMed ID: 31946055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fully Convolutional Networks for Semantic Segmentation.
    Shelhamer E; Long J; Darrell T
    IEEE Trans Pattern Anal Mach Intell; 2017 Apr; 39(4):640-651. PubMed ID: 27244717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions.
    El-Khatib H; Popescu D; Ichim L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245258
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Redundant feature pruning for accelerated inference in deep neural networks.
    Ayinde BO; Inanc T; Zurada JM
    Neural Netw; 2019 Oct; 118():148-158. PubMed ID: 31279285
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning.
    Wang G; Sun Y; Wang J
    Comput Intell Neurosci; 2017; 2017():2917536. PubMed ID: 28757863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.