These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3289922)

  • 1. Kinetic and spectral studies on the redox forms of methanol dehydrogenase from Hyphomicrobium X.
    Frank J; Dijkstra M; Duine JA; Balny C
    Eur J Biochem; 1988 Jun; 174(2):331-8. PubMed ID: 3289922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on electron transfer from methanol dehydrogenase to cytochrome cL, both purified from Hyphomicrobium X.
    Dijkstra M; Frank J; Duine JA
    Biochem J; 1989 Jan; 257(1):87-94. PubMed ID: 2537627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of multiple ligand binding on kinetic isotope effects in PQQ-dependent methanol dehydrogenase.
    Hothi P; Basran J; Sutcliffe MJ; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3966-78. PubMed ID: 12667088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-assisted, direct hydride transfer, and rate-determining tautomerization of C5-reduced PQQ to PQQH2, in the oxidation of beta-D-glucose by soluble, quinoprotein glucose dehydrogenase.
    Dewanti AR; Duine JA
    Biochemistry; 2000 Aug; 39(31):9384-92. PubMed ID: 10924133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on methanol dehydrogenase from Hyphomicrobium X. Isolation of an oxidized form of the enzyme.
    Duine JA; Frank J
    Biochem J; 1980 Apr; 187(1):213-9. PubMed ID: 6996671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel dye-linked formaldehyde dehydrogenase with some properties indicating the presence of a protein-bound redox-active quinone cofactor.
    Klein CR; Kesseler FP; Perrei C; Frank J; Duine JA; Schwartz AC
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):289-95. PubMed ID: 8037683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new kinetic model for the steady-state reactions of the quinoprotein methanol dehydrogenase from Paracoccus denitrificans.
    Harris TK; Davidson VL
    Biochemistry; 1993 Apr; 32(16):4362-8. PubMed ID: 8386543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors.
    Frank J; van Krimpen SH; Verwiel PE; Jongejan JA; Mulder AC; Duine JA
    Eur J Biochem; 1989 Sep; 184(1):187-95. PubMed ID: 2550226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF
    Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of methanol dehydrogenase from Hyphomicrobium x.
    Duine JA; Frank J; Westerling J
    Biochim Biophys Acta; 1978 Jun; 524(2):277-87. PubMed ID: 208617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The soluble cytochromes c of methanol-grown Hyphomicrobium X. Evidence against the involvement of autoreduction in electron-acceptor functioning of cytochrome cL.
    Dijkstra M; Frank J; van Wielink JE; Duine JA
    Biochem J; 1988 Apr; 251(2):467-74. PubMed ID: 2840895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic isotope effects and ligand binding in PQQ-dependent methanol dehydrogenase.
    Hothi P; Sutcliffe MJ; Scrutton NS
    Biochem J; 2005 May; 388(Pt 1):123-33. PubMed ID: 15617516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-dependent semiquinone formation by methylamine dehydrogenase from Paracoccus denitrificans. Evidence for intermolecular electron transfer between quinone cofactors.
    Davidson VL; Jones LH; Kumar MA
    Biochemistry; 1990 Dec; 29(48):10786-91. PubMed ID: 2271681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton abstraction reaction, steady-state kinetics, and oxidation-reduction potential of human glutaryl-CoA dehydrogenase.
    Dwyer TM; Rao KS; Goodman SI; Frerman FE
    Biochemistry; 2000 Sep; 39(37):11488-99. PubMed ID: 10985795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.
    Marpani F; Sárossy Z; Pinelo M; Meyer AS
    Biotechnol Bioeng; 2017 Dec; 114(12):2762-2770. PubMed ID: 28832942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent oxygen-dependent inhibition by superoxide dismutase of the quinoprotein methanol dehydrogenase.
    Davidson VL; Kumar MA; Wu JY
    Biochemistry; 1992 Feb; 31(5):1504-8. PubMed ID: 1310612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions of dimethylsulfoxide reductase from Rhodobacter capsulatus with dimethyl sulfide and with dimethyl sulfoxide: complexities revealed by conventional and stopped-flow spectrophotometry.
    Adams B; Smith AT; Bailey S; McEwan AG; Bray RC
    Biochemistry; 1999 Jun; 38(26):8501-11. PubMed ID: 10387097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.