BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32899247)

  • 1. Fast Wearable Sensor-Based Foot-Ground Contact Phase Classification Using a Convolutional Neural Network with Sliding-Window Label Overlapping.
    Jeon H; Kim SL; Kim S; Lee D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32899247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Neural Network-Based Gait Classification Using Wearable Inertial Sensor Data.
    Jung D; Nguyen MD; Han J; Park M; Lee K; Yoo S; Kim J; Mun KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3624-3628. PubMed ID: 31946661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System.
    Liu K; Liu Y; Ji S; Gao C; Fu J
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait event detection using a thigh-worn accelerometer.
    Gurchiek RD; Garabed CP; McGinnis RS
    Gait Posture; 2020 Jul; 80():214-216. PubMed ID: 32535399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Time-Window Derivation for Human-Activity Recognition Based on Convolutional Neural Networks of Repeated Rehabilitation Motions.
    Lee KS; Chae S; Park HS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():583-586. PubMed ID: 31374693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Open Data Set of Inertial, Magnetic, Foot-Ground Contact, and Electromyographic Signals From Wearable Sensors During Walking.
    Camara Miraldo D; Naville Watanabe R; Duarte M
    Motor Control; 2020 Aug; 24(4):558-570. PubMed ID: 32810842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-subject approach for gait-event prediction by neural network interpretation of EMG signals.
    Di Nardo F; Morbidoni C; Mascia G; Verdini F; Fioretti S
    Biomed Eng Online; 2020 Jul; 19(1):58. PubMed ID: 32723335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personal Identification Using Gait Spectrograms and Deep Convolutional Neural Networks.
    Jung D; Nguyen MD; Arshad MZ; Kim J; Mun KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6899-6904. PubMed ID: 34892691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Fine-Grained Foot Strike Patterns with Wearable Smartwatch Devices.
    Joo H; Kim H; Ryu JK; Ryu S; Lee KM; Kim SC
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Classification of Minor Gait Alterations Using Wearable Sensors and Deep Learning.
    Turner A; Hayes S
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3136-3145. PubMed ID: 30794506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground Contact Time Estimating Wearable Sensor to Measure Spatio-Temporal Aspects of Gait.
    Bernhart S; Kranzinger S; Berger A; Peternell G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors.
    Huang H; Zhou P; Li Y; Sun F
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi-Directional Long Short-Term Memory-Based Gait Phase Recognition Method Robust to Directional Variations in Subject's Gait Progression Using Wearable Inertial Sensor.
    Jeon H; Lee D
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications.
    Zhang Q; Jin T; Cai J; Xu L; He T; Wang T; Tian Y; Li L; Peng Y; Lee C
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103694. PubMed ID: 34796695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional Neural Network for Freezing of Gait Detection Leveraging the Continuous Wavelet Transform on Lower Extremities Wearable Sensors Data.
    Shi B; Yen SC; Tay A; Tan DML; Chia NSY; Au WL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5410-5415. PubMed ID: 33019204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal Gait Abnormality Recognition Using a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) Network Based on Multi-Sensor Data Fusion.
    Li J; Liang W; Yin X; Li J; Guan W
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.