These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32899316)

  • 1. Rheology and 3D Printability of Percolated Graphene-Polyamide-6 Composites.
    Lee KPM; Brandt M; Shanks R; Daver F
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32899316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological Investigation of Hydroxypropyl Cellulose-Based Filaments for Material Extrusion 3D Printing.
    Than YM; Suriyarak S; Titapiwatanakun V
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Effects of Graphene and Carbon Nanotubes on Rheology and Flow Instability for Designing Printable Polymer Nanocomposites.
    Kotsilkova R; Tabakova S
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation and modelling of the thermorheological properties of pharmaceutical polymers and their blends using capillary rheometry: Implications for hot melt processing of dosage forms.
    Jones DS; Margetson DN; McAllister MS; Andrews GP
    Int J Pharm; 2015 Sep; 493(1-2):251-9. PubMed ID: 26188317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can filaments, pellets and powder be used as feedstock to produce highly drug-loaded ethylene-vinyl acetate 3D printed tablets using extrusion-based additive manufacturing?
    Samaro A; Shaqour B; Goudarzi NM; Ghijs M; Cardon L; Boone MN; Verleije B; Beyers K; Vanhoorne V; Cos P; Vervaet C
    Int J Pharm; 2021 Sep; 607():120922. PubMed ID: 34303815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS.
    Oladeji S; Mohylyuk V; Jones DS; Andrews GP
    Int J Pharm; 2022 Mar; 616():121553. PubMed ID: 35131354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprint of "Characterisation and modelling of the thermorheological properties of pharmaceutical polymers and their blends using capillary rheometry: Implications for hot melt processing of dosage forms".
    Jones DS; Margetson DN; McAllister MS; Andrews GP
    Int J Pharm; 2015 Dec; 496(1):86-94. PubMed ID: 26551434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological Properties and 3D Printing Behavior of PCL and DMSO
    Jang JW; Min KE; Kim C; Wern C; Yi S
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of 3D printability of composite dairy matrix by correlating with its rheological properties.
    Joshi S; Sahu JK; Bareen MA; Prakash S; Bhandari B; Sharma N; Naik SN
    Food Res Int; 2021 Mar; 141():110111. PubMed ID: 33641978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chocolate-based Ink Three-dimensional Printing (Ci3DP).
    Karyappa R; Hashimoto M
    Sci Rep; 2019 Oct; 9(1):14178. PubMed ID: 31578354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting.
    Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS
    Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Investigation of the Melt Shear Viscosity, Specific Volume and Thermal Conductivity of Low-Density Polyethylene/Multi-Walled Carbon Nanotube Composites Using Capillary Flow.
    Stanciu NV; Stan F; Fetecau C
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32481727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels.
    Barrulas RV; Corvo MC
    Gels; 2023 Dec; 9(12):. PubMed ID: 38131974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Printability and mechanical performance of biomedical PDMS-PEEK composites developed for material extrusion.
    Smith JA; Li S; Mele E; Goulas A; Engstrøm D; Silberschmidt VV
    J Mech Behav Biomed Mater; 2021 Mar; 115():104291. PubMed ID: 33421949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing of Viscoelastic Suspensions via Digital Light Synthesis for Tough Nanoparticle-Elastomer Composites.
    Wang K; Pan W; Liu Z; Wallin TJ; van Dover G; Li S; Giannelis EP; Menguc Y; Shepherd RF
    Adv Mater; 2020 Jun; 32(25):e2001646. PubMed ID: 32419251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing with 2D colloids: designing rheology protocols to predict 'printability' of soft-materials.
    Corker A; Ng HC; Poole RJ; García-Tuñón E
    Soft Matter; 2019 Feb; 15(6):1444-1456. PubMed ID: 30667028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.