These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32899332)

  • 21. Reintroduction of rare arable plants by seed transfer. What are the optimal sowing rates?
    Lang M; Prestele J; Fischer C; Kollmann J; Albrecht H
    Ecol Evol; 2016 Aug; 6(15):5506-16. PubMed ID: 27551400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field.
    Shine MB; Guruprasad KN; Anand A
    Bioelectromagnetics; 2011 Sep; 32(6):474-84. PubMed ID: 21381047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanotechnology: A New Opportunity in Plant Sciences.
    Wang P; Lombi E; Zhao FJ; Kopittke PM
    Trends Plant Sci; 2016 Aug; 21(8):699-712. PubMed ID: 27130471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.).
    Anand A; Nagarajan S; Verma AP; Joshi DK; Pathak PC; Bhardwaj J
    Indian J Biochem Biophys; 2012 Feb; 49(1):63-70. PubMed ID: 22435146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seed pretreatment with magnetic field alters the storage proteins and lipid profiles in harvested soybean seeds.
    Radhakrishnan R
    Physiol Mol Biol Plants; 2018 Mar; 24(2):343-347. PubMed ID: 29515328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allelopathic and intraspecific growth competition effects establishment of direct sown
    Awty-Carroll D; Hauck B; Clifton-Brown J; Robson P
    Glob Change Biol Bioenergy; 2020 Jun; 12(6):396-409. PubMed ID: 32612681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical Methods for Seed Invigoration: Advantages and Challenges in Seed Technology.
    Araújo Sde S; Paparella S; Dondi D; Bentivoglio A; Carbonera D; Balestrazzi A
    Front Plant Sci; 2016; 7():646. PubMed ID: 27242847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species.
    Ishibashi Y; Yuasa T; Iwaya-Inoue M
    Adv Exp Med Biol; 2018; 1081():233-257. PubMed ID: 30288713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extremely low frequency weak magnetic fields enhance resistance of NN tobacco plants to tobacco mosaic virus and elicit stress-related biochemical activities.
    Trebbi G; Borghini F; Lazzarato L; Torrigiani P; Calzoni GL; Betti L
    Bioelectromagnetics; 2007 Apr; 28(3):214-23. PubMed ID: 17080458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seed Biopriming with Microbial Inoculant Triggers Local and Systemic Defense Responses against
    Singh S; Singh UB; Malviya D; Paul S; Sahu PK; Trivedi M; Paul D; Saxena AK
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32098185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering physio-biochemical, yield, and nutritional quality attributes of water-stressed radish (Raphanus sativus L.) plants grown from Zn-Lys primed seeds.
    Noman A; Ali Q; Maqsood J; Iqbal N; Javed MT; Rasool N; Naseem J
    Chemosphere; 2018 Mar; 195():175-189. PubMed ID: 29268176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of pulsed electromagnetic field as a novel organic pre-sowing method on germination and initial growth stages of cotton.
    Bilalis DJ; Katsenios N; Efthimiadou A; Karkanis A; Efthimiadis P
    Electromagn Biol Med; 2012 Jun; 31(2):143-50. PubMed ID: 22268861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can safe and long-term exposure to extremely low frequency (50 Hz) magnetic fields affect apoptosis, reproduction, and oxidative stress?
    Akdag MZ; Dasdag S; Uzunlar AK; Ulukaya E; Oral AY; Çelik N; Akşen F
    Int J Radiat Biol; 2013 Dec; 89(12):1053-60. PubMed ID: 23786626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seed vigour and crop establishment: extending performance beyond adaptation.
    Finch-Savage WE; Bassel GW
    J Exp Bot; 2016 Feb; 67(3):567-91. PubMed ID: 26585226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field.
    Payez A; Ghanati F; Behmanesh M; Abdolmaleki P; Hajnorouzi A; Rajabbeigi E
    Electromagn Biol Med; 2013 Dec; 32(4):417-29. PubMed ID: 23343429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crop protection by seed coating.
    Ehsanfar S; Modarres-Sanavy SA
    Commun Agric Appl Biol Sci; 2005; 70(3):225-9. PubMed ID: 16637182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.).
    Joshi A; Kaur S; Dharamvir K; Nayyar H; Verma G
    J Sci Food Agric; 2018 Jun; 98(8):3148-3160. PubMed ID: 29220088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of the growth and yield of lettuce plants by non-uniform magnetic fields.
    De Souza A; Sueiro L; González LM; Licea L; Porras EP; Gilart F
    Electromagn Biol Med; 2008; 27(2):173-84. PubMed ID: 18568935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulated partitioning of fixed carbon (
    Kumar P; Sharma V; Atmaram CK; Singh B
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7285-7297. PubMed ID: 28102497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dormancy and germination: How does the crop seed decide?
    Shu K; Meng YJ; Shuai HW; Liu WG; Du JB; Liu J; Yang WY
    Plant Biol (Stuttg); 2015 Nov; 17(6):1104-12. PubMed ID: 26095078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.