These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32899348)

  • 1. A Deep-Learning Method for Radar Micro-Doppler Spectrogram Restoration.
    He Y; Li X; Li R; Wang J; Jing X
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32899348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Human Micro-Doppler Signature Based on Layer-Reduced Deep Convolutional Generative Adversarial Network.
    Ostovan M; Samadi S; Kazemi A
    Comput Intell Neurosci; 2022; 2022():7365544. PubMed ID: 35463251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Space Objects by Using Deep Learning with Micro-Doppler Signature Images.
    Jung K; Lee JI; Kim N; Oh S; Seo DW
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radar-Spectrogram-Based UAV Classification Using Convolutional Neural Networks.
    Park D; Lee S; Park S; Kwak N
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmentation of Doppler Radar Data Using Generative Adversarial Network for Human Motion Analysis.
    Alnujaim I; Kim Y
    Healthc Inform Res; 2019 Oct; 25(4):344-349. PubMed ID: 31777679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis of Audio Processing Techniques on Doppler Radar Signature of Human Walking Motion Using CNN Models.
    Ha MK; Phan TL; Nguyen DHH; Quan NH; Ha-Phan NQ; Ching CTS; Hieu NV
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FMCW Radar Human Action Recognition Based on Asymmetric Convolutional Residual Blocks.
    Zhang Y; Tang H; Wu Y; Wang B; Yang D
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radar Human Activity Recognition with an Attention-Based Deep Learning Network.
    Huan S; Wu L; Zhang M; Wang Z; Yang C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.
    Rahnemoonfar M; Johnson J; Paden J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space Target Classification Improvement by Generating Micro-Doppler Signatures Considering Incident Angle.
    Lee JI; Kim N; Min S; Kim J; Jeong DK; Seo DW
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data.
    Tan TH; Tian JH; Sharma AK; Liu SH; Huang YF
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks.
    Park J; Javier RJ; Moon T; Kim Y
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27886151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pedestrian and Animal Recognition Using Doppler Radar Signature and Deep Learning.
    Buchman D; Drozdov M; Krilavičius T; Maskeliūnas R; Damaševičius R
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Human Motions Using Micro-Doppler Radar in the Environments with Micro-Motion Interference.
    Ma X; Zhao R; Liu X; Kuang H; Al-Qaness MAA
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel Connected Generative Adversarial Network with Quadratic Operation for SAR Image Generation and Application for Classification.
    He C; Xiong D; Zhang Q; Liao M
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Millimeter-Wave Array Radar-Based Human Gait Recognition Using Multi-Channel Three-Dimensional Convolutional Neural Network.
    Jiang X; Zhang Y; Yang Q; Deng B; Wang H
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Classification of 3.5 GHz Band Spectrograms with Applications to Spectrum Sensing.
    Lees WM; Wunderlich A; Jeavons P; Hale PD; Souryal MR
    IEEE Trans Cogn Commun Netw; 2019; 5():. PubMed ID: 31276014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Human Motion Using Radar Sensor in an Indoor Environment.
    Kang SW; Jang MH; Lee S
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a Low-Cost Solution for Gait Analysis Using Millimeter Wave Sensor and Machine Learning.
    Alanazi MA; Alhazmi AK; Alsattam O; Gnau K; Brown M; Thiel S; Jackson K; Chodavarapu VP
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Convolutional Neural Network-Based Method for Discriminating Shadowed Targets in Frequency-Modulated Continuous-Wave Radar Systems.
    Mohanna A; Gianoglio C; Rizik A; Valle M
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.