BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 32899409)

  • 1. Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration.
    Lekshmi G; Sana SS; Nguyen VH; Nguyen THC; Nguyen CC; Le QV; Peng W
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotubes leading the way forward in new generation 3D tissue engineering.
    Hopley EL; Salmasi S; Kalaskar DM; Seifalian AM
    Biotechnol Adv; 2014; 32(5):1000-14. PubMed ID: 24858314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric composites containing carbon nanotubes for bone tissue engineering.
    Sahithi K; Swetha M; Ramasamy K; Srinivasan N; Selvamurugan N
    Int J Biol Macromol; 2010 Apr; 46(3):281-3. PubMed ID: 20093139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotubes: directions and perspectives in oral regenerative medicine.
    Martins-Júnior PA; Alcântara CE; Resende RR; Ferreira AJ
    J Dent Res; 2013 Jul; 92(7):575-83. PubMed ID: 23677650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
    Ahadian S; Yamada S; Ramón-Azcón J; Estili M; Liang X; Nakajima K; Shiku H; Khademhosseini A; Matsue T
    Acta Biomater; 2016 Feb; 31():134-143. PubMed ID: 26621696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro characterization of an electroactive carbon-nanotube-based nanofiber scaffold for tissue engineering.
    Mackle JN; Blond DJ; Mooney E; McDonnell C; Blau WJ; Shaw G; Barry FP; Murphy JM; Barron V
    Macromol Biosci; 2011 Sep; 11(9):1272-82. PubMed ID: 21728234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications.
    Gorain B; Choudhury H; Pandey M; Kesharwani P; Abeer MM; Tekade RK; Hussain Z
    Biomed Pharmacother; 2018 Aug; 104():496-508. PubMed ID: 29800914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube-based biomaterials for orthopaedic applications.
    Aoki K; Ogihara N; Tanaka M; Haniu H; Saito N
    J Mater Chem B; 2020 Oct; 8(40):9227-9238. PubMed ID: 32935730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research progress on application of carbon nanotubes in bone tissue engineering scaffold].
    Yao M; Sheng X; Lin J; Gao J
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 Mar; 45(2):161-9. PubMed ID: 27273990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering.
    Van den Broeck L; Piluso S; Soultan AH; De Volder M; Patterson J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1133-1144. PubMed ID: 30812997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of PCL/carbon material scaffolds for bone regeneration.
    Wang W; Huang B; Byun JJ; Bártolo P
    J Mech Behav Biomed Mater; 2019 May; 93():52-60. PubMed ID: 30769234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiwalled Carbon Nanotube-Chitosan Scaffold: Cytotoxic, Apoptoti c, and Necrotic Effects on Chondrocyte Cell Lines.
    Ilbasmis-Tamer S; Ciftci H; Turk M; Degim T; Tamer U
    Curr Pharm Biotechnol; 2017; 18(4):327-335. PubMed ID: 28137220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment.
    Gulati K; Meher MK; Poluri KM
    Regen Med; 2017 Apr; 12(4):431-457. PubMed ID: 28621207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes.
    Gaharwar AK; Patel A; Dolatshahi-Pirouz A; Zhang H; Rangarajan K; Iviglia G; Shin SR; Hussain MA; Khademhosseini A
    Biomater Sci; 2015 Jan; 3(1):46-58. PubMed ID: 26214188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering.
    Tonelli FM; Santos AK; Gomes KN; Lorençon E; Guatimosim S; Ladeira LO; Resende RR
    Int J Nanomedicine; 2012; 7():4511-29. PubMed ID: 22923989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering.
    Gholizadeh S; Moztarzadeh F; Haghighipour N; Ghazizadeh L; Baghbani F; Shokrgozar MA; Allahyari Z
    Int J Biol Macromol; 2017 Apr; 97():365-372. PubMed ID: 28064056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes in scaffolds for tissue engineering.
    Edwards SL; Werkmeister JA; Ramshaw JA
    Expert Rev Med Devices; 2009 Sep; 6(5):499-505. PubMed ID: 19751122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes: biomaterial applications.
    Saito N; Usui Y; Aoki K; Narita N; Shimizu M; Hara K; Ogiwara N; Nakamura K; Ishigaki N; Kato H; Taruta S; Endo M
    Chem Soc Rev; 2009 Jul; 38(7):1897-903. PubMed ID: 19551170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.