These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32899533)

  • 1. A Real-Time Dual-Microphone Speech Enhancement Algorithm Assisted by Bone Conduction Sensor.
    Zhou Y; Chen Y; Ma Y; Liu H
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust Dual-Microphone Generalized Sidelobe Canceller Using a Bone-Conduction Sensor for Speech Enhancement.
    Zhou Y; Wang H; Chu Y; Liu H
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone-Conduction Sensor Assisted Noise Estimation for Improved Speech Enhancement.
    Lee CH; Rao BD; Garudadri H
    Interspeech; 2018 Sep; 2018():1180-1184. PubMed ID: 34307636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. .Signal Transparency of Remote Microphone Technology in Pediatric Bone Conduction Device Users.
    Sanchez C; Morgenstein K; Snapp H
    Audiol Neurootol; 2023; 28(5):360-370. PubMed ID: 37271142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise reduction results of an adaptive filtering technique for dual-microphone behind-the-ear hearing aids.
    Maj JB; Wouters J; Moonen M
    Ear Hear; 2004 Jun; 25(3):215-29. PubMed ID: 15179113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.
    Spriet A; Van Deun L; Eftaxiadis K; Laneau J; Moonen M; van Dijk B; van Wieringen A; Wouters J
    Ear Hear; 2007 Feb; 28(1):62-72. PubMed ID: 17204899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research of front-end speech enhancement and beamforming algorithm based on dual microphoneforcochlear implant].
    Chen Y; Chen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):468-477. PubMed ID: 31232551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based speech enhancement using a bone-conducted signal.
    Kechichian P; Srinivasan S
    J Acoust Soc Am; 2012 Mar; 131(3):EL262-7. PubMed ID: 22423818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time spectrum estimation-based dual-channel speech-enhancement algorithm for cochlear implant.
    Chen Y; Gong Q
    Biomed Eng Online; 2012 Sep; 11():74. PubMed ID: 23006896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech Understanding and Sound Source Localization by Cochlear Implant Listeners Using a Pinna-Effect Imitating Microphone and an Adaptive Beamformer.
    Dorman MF; Natale S; Loiselle L
    J Am Acad Audiol; 2018 Mar; 29(3):197-205. PubMed ID: 29488870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling Real-Time On-Chip Audio Super Resolution for Bone-Conduction Microphones.
    Li Y; Wang Y; Liu X; Shi Y; Patel S; Shih SF
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound Localization and Speech Enhancement Algorithm Based on Dual-Microphone.
    Tao T; Zheng H; Yang J; Guo Z; Zhang Y; Ao J; Chen Y; Lin W; Tan X
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusing Bone-conduction and Air-conduction Sensors for Complex-Domain Speech Enhancement.
    Wang H; Zhang X; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2022; 30():3134-3143. PubMed ID: 37124143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands.
    Na SD; Wei Q; Seong KW; Cho JH; Kim MN
    Technol Health Care; 2018; 26(S1):281-289. PubMed ID: 29710756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless and acoustic hearing with bone-anchored hearing devices.
    Bosman AJ; Mylanus EA; Hol MK; Snik AF
    Int J Audiol; 2015 Jul; 55(7):419-24. PubMed ID: 27176657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of bone conduction microphone placement on intensity and spectrum of transmitted speech items.
    Tran PK; Letowski TR; McBride ME
    J Acoust Soc Am; 2013 Jun; 133(6):3900-8. PubMed ID: 23742344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive noise suppression for a dual-microphone hearing aid.
    Wouters J; Berghe JV; Maj JB
    Int J Audiol; 2002 Oct; 41(7):401-7. PubMed ID: 12403608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-based dual-microphone robust speech enhancement.
    Aarabi P; Shi G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1763-73. PubMed ID: 15462443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.
    de Taillez T; Grimm G; Kollmeier B; Neher T
    Int J Audiol; 2018 Jun; 57(sup3):S81-S91. PubMed ID: 28395561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of MVDR beamformer on a Speech Enhancement based Smartphone application for Hearing Aids.
    Shankar N; Kucuk A; Reddy CKA; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():417-420. PubMed ID: 30440422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.