These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32899755)

  • 1. Machine-Learning Analysis of Voice Samples Recorded through Smartphones: The Combined Effect of Ageing and Gender.
    Asci F; Costantini G; Di Leo P; Zampogna A; Ruoppolo G; Berardelli A; Saggio G; Suppa A
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach.
    Fang SH; Tsao Y; Hsiao MJ; Chen JY; Lai YH; Lin FC; Wang CT
    J Voice; 2019 Sep; 33(5):634-641. PubMed ID: 29567049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normative voice data for younger and older adults.
    Goy H; Fernandes DN; Pichora-Fuller MK; van Lieshout P
    J Voice; 2013 Sep; 27(5):545-55. PubMed ID: 23769007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.
    Maryn Y; Ysenbaert F; Zarowski A; Vanspauwen R
    J Voice; 2017 Mar; 31(2):248.e11-248.e23. PubMed ID: 27692682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voice Analysis with Machine Learning: One Step Closer to an Objective Diagnosis of Essential Tremor.
    Suppa A; Asci F; Saggio G; Di Leo P; Zarezadeh Z; Ferrazzano G; Ruoppolo G; Berardelli A; Costantini G
    Mov Disord; 2021 Jun; 36(6):1401-1410. PubMed ID: 33528037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms.
    Mesallam TA; Farahat M; Malki KH; Alsulaiman M; Ali Z; Al-Nasheri A; Muhammad G
    J Healthc Eng; 2017; 2017():8783751. PubMed ID: 29201333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing voice health using smartphones: bias and random error of acoustic voice parameters captured by different smartphone types.
    Jannetts S; Schaeffler F; Beck J; Cowen S
    Int J Lang Commun Disord; 2019 Mar; 54(2):292-305. PubMed ID: 30779425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphones Offer New Opportunities in Clinical Voice Research.
    Manfredi C; Lebacq J; Cantarella G; Schoentgen J; Orlandi S; Bandini A; DeJonckere PH
    J Voice; 2017 Jan; 31(1):111.e1-111.e7. PubMed ID: 27068549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximal Ambient Noise Levels and Type of Voice Material Required for Valid Use of Smartphones in Clinical Voice Research.
    Lebacq J; Schoentgen J; Cantarella G; Bruss FT; Manfredi C; DeJonckere P
    J Voice; 2017 Sep; 31(5):550-556. PubMed ID: 28320627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of an Open Jaw Posture on Vowel Perception in the Aging Voice.
    Mautner HD
    J Voice; 2016 Nov; 30(6):772.e23-772.e32. PubMed ID: 26743608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score.
    Zhan A; Mohan S; Tarolli C; Schneider RB; Adams JL; Sharma S; Elson MJ; Spear KL; Glidden AM; Little MA; Terzis A; Dorsey ER; Saria S
    JAMA Neurol; 2018 Jul; 75(7):876-880. PubMed ID: 29582075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the relationship between spectral and cepstral measures of voice and the Voice Handicap Index (VHI).
    Awan SN; Roy N; Cohen SM
    J Voice; 2014 Jul; 28(4):430-9. PubMed ID: 24698884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of cepstral analysis for differentiating dysphonic from normal voices in children.
    Esen Aydinli F; Özcebe E; İncebay Ö
    Int J Pediatr Otorhinolaryngol; 2019 Jan; 116():107-113. PubMed ID: 30554679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Telemonitoring Parkinson's disease using machine learning by combining tremor and voice analysis.
    Sajal MSR; Ehsan MT; Vaidyanathan R; Wang S; Aziz T; Mamun KAA
    Brain Inform; 2020 Oct; 7(1):12. PubMed ID: 33090328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistency of voice frequency and perturbation measures in children using cepstral analyses: a movement toward increased recording stability.
    Diercks GR; Ojha S; Infusino S; Maurer R; Hartnick CJ
    JAMA Otolaryngol Head Neck Surg; 2013 Aug; 139(8):811-6. PubMed ID: 23949356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of age on speech and voice quality ratings.
    Goy H; Kathleen Pichora-Fuller M; van Lieshout P
    J Acoust Soc Am; 2016 Apr; 139(4):1648. PubMed ID: 27106312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Objective voice and speech analysis of persons with chronic hoarseness by prosodic analysis of speech samples.
    Haderlein T; Döllinger M; Matoušek V; Nöth E
    Logoped Phoniatr Vocol; 2016 Oct; 41(3):106-16. PubMed ID: 26016644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a machine-learning based voice disorder screening tool.
    Reid J; Parmar P; Lund T; Aalto DK; Jeffery CC
    Am J Otolaryngol; 2022; 43(2):103327. PubMed ID: 34923280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meta-analysis of voice disorders databases and applied machine learning techniques.
    Syed SA; Rashid M; Hussain S
    Math Biosci Eng; 2020 Nov; 17(6):7958-7979. PubMed ID: 33378928
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.