These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32899787)

  • 1. Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte.
    Biegun M; Dymerska A; Chen X; Mijowska E
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Modification Effect and Electrochemical Performance of LiOH-High Surface Activated Carbon as a Cathode Material in EDLC.
    Otgonbayar Z; Yang S; Kim IJ; Oh WC
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iodine adsorption and electrochemical double-layer capacitor characteristics of activated carbon prepared from low-cost biomass.
    Saka C; Yardim Y; Şahin Ö; Baytar O
    Int J Phytoremediation; 2023; 25(1):74-81. PubMed ID: 35385347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Temperature and Pore Structure on High Surface Area-Activated Carbon Obtained from Peanut Shells.
    Kalpana D; Lee YS
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2950-5. PubMed ID: 27455740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of activated biomass carbon from tea leaf for supercapacitor applications.
    Thirumal V; Yuvakkumar R; Ravi G; Dineshkumar G; Ganesan M; Alotaibi SH; Velauthapillai D
    Chemosphere; 2022 Mar; 291(Pt 2):132931. PubMed ID: 34793843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified Activation Process for Supercapacitor Electrode Materials from African Maize Cob.
    Kigozi M; Kali R; Bello A; Padya B; Kalu-Uka GM; Wasswa J; Jain PK; Onwualu PA; Dzade NY
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33261206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gamma-induced interconnected networks in microporous activated carbons from palm petiole under NaNO
    Benwannamas N; Sangtawesin T; Yilmaz M; Kanjana K
    Sci Rep; 2023 Aug; 13(1):12887. PubMed ID: 37558768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea.
    Yaglikci S; Gokce Y; Yagmur E; Aktas Z
    Environ Technol; 2020 Jan; 41(1):36-48. PubMed ID: 30681935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Pore Structures of Cellulose-Based Activated Carbon Fibers and Their Applications for Electrode Materials.
    Kim JH; Jung SC; Lee HM; Kim BJ
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Electrochemical Properties of Mesoporous Manganese Dioxide-Based Composite Electrode for Supercapacitor.
    Jiang Y; Cui X; Zu L; Hu Z; Gan J; Lian H; Liu Y; Xing G
    J Nanosci Nanotechnol; 2017 Jan; 17(1):507-16. PubMed ID: 29625521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coffee grounds derived N enriched microporous activated carbons: Efficient adsorbent for post-combustion CO
    Wang H; Li X; Cui Z; Fu Z; Yang L; Liu G; Li M
    J Colloid Interface Sci; 2020 Oct; 578():491-499. PubMed ID: 32535430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable Preparation of Nanoporous Carbons via Dry Ball Milling: Electrochemical Studies Using Nanocarbon Composite Electrodes and a Deep Eutectic Solvent as Electrolyte.
    Brandão ATSC; Costa R; Silva AF; Pereira CM
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excellent Compatibility of the Gravimetric and Areal Capacitances of an Electric-Double-Layer Capacitor Configured with S-Doped Activated Carbon.
    Ma X; Zhao L; Yu Z; Wang X; Song X; Ning G; Gao J
    ChemSusChem; 2018 Nov; 11(21):3766-3773. PubMed ID: 30152903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Study on Superior Mesoporous Activated Carbons for Ultra Power Density Supercapacitor from Biomass Precursors.
    Bang JH; Lee BH; Choi YC; Lee HM; Kim BJ
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Polyaniline-Coated Ordered Mesoporous Carbon Composite Electrode Material for Supercapacitor and Its Enhanced Electrochemical Performance.
    Li N; Xu J; Xu L; Du J; Wang X
    J Nanosci Nanotechnol; 2015 Jul; 15(7):4961-8. PubMed ID: 26373062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors.
    Li M; Westover AS; Carter R; Oakes L; Muralidharan N; Boire TC; Sung HJ; Pint CL
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19558-66. PubMed ID: 27380273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Properties of Graphene Oxide/Resol Composites as Electrode Materials for Supercapacitor Applications.
    Park GW; Jeon SK; Yang JY; Choi SD; Kim GJ
    J Nanosci Nanotechnol; 2016 May; 16(5):4320-7. PubMed ID: 27483752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High energy supercapattery with an ionic liquid solution of LiClO4.
    Yu L; Chen GZ
    Faraday Discuss; 2016 Aug; 190():231-40. PubMed ID: 27228429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area.
    Li XJ; Xing W; Zhou J; Wang GQ; Zhuo SP; Yan ZF; Xue QZ; Qiao SZ
    Chemistry; 2014 Oct; 20(41):13314-20. PubMed ID: 25156693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of MnO
    Lin Z; Xiang X; Chen K; Peng S; Jiang X; Hou L
    J Colloid Interface Sci; 2019 Mar; 540():466-475. PubMed ID: 30665170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.