These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32900089)

  • 1. Autonomous microfluidics with stimuli-responsive hydrogels.
    Dong L; Jiang H
    Soft Matter; 2007 Sep; 3(10):1223-1230. PubMed ID: 32900089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels.
    Agarwal AK; Dong L; Beebe DJ; Jiang H
    Lab Chip; 2007 Mar; 7(3):310-5. PubMed ID: 17330161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive liquid microlenses activated by stimuli-responsive hydrogels.
    Dong L; Agarwal AK; Beebe DJ; Jiang H
    Nature; 2006 Aug; 442(7102):551-4. PubMed ID: 16885981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics and materials for smart water monitoring: A review.
    Saez J; Catalan-Carrio R; Owens RM; Basabe-Desmonts L; Benito-Lopez F
    Anal Chim Acta; 2021 Nov; 1186():338392. PubMed ID: 34756264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips.
    Zhang Q; Zhang M; Djeghlaf L; Bataille J; Gamby J; Haghiri-Gosnet AM; Pallandre A
    Electrophoresis; 2017 Apr; 38(7):953-976. PubMed ID: 28059451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogels: The Next Generation Body Materials for Microfluidic Chips?
    Nie J; Fu J; He Y
    Small; 2020 Nov; 16(46):e2003797. PubMed ID: 33103353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling fluid flow to hydrogel fluidic devices with reversible "pop-it" connections.
    Abbasi R; LeFevre TB; Benjamin AD; Thornton IJ; Wilking JN
    Lab Chip; 2021 May; 21(10):2050-2058. PubMed ID: 33861296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchable pumps for soft machines.
    Cacucciolo V; Shintake J; Kuwajima Y; Maeda S; Floreano D; Shea H
    Nature; 2019 Aug; 572(7770):516-519. PubMed ID: 31413364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics.
    Venzac B; Liu Y; Ferrante I; Vargas P; Yamada A; Courson R; Verhulsel M; Malaquin L; Viovy JL; Descroix S
    Microsyst Nanoeng; 2020; 6():18. PubMed ID: 34567633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Punch card programmable microfluidics.
    Korir G; Prakash M
    PLoS One; 2015; 10(3):e0115993. PubMed ID: 25738834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital microfluidics using soft lithography.
    Urbanski JP; Thies W; Rhodes C; Amarasinghe S; Thorsen T
    Lab Chip; 2006 Jan; 6(1):96-104. PubMed ID: 16372075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel Patterns in Microfluidic Devices by Do-It-Yourself UV-Photolithography Suitable for Very Large-Scale Integration.
    Beck A; Obst F; Busek M; Grünzner S; Mehner PJ; Paschew G; Appelhans D; Voit B; Richter A
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32370256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional hydrogel structures for autonomous flow control inside microfluidic channels.
    Beebe DJ; Moore JS; Bauer JM; Yu Q; Liu RH; Devadoss C; Jo BH
    Nature; 2000 Apr; 404(6778):588-90. PubMed ID: 10766238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation-based analysis of fluid flow and electrokinetic phenomena in microfluidic devices.
    Krishnamoorthy S; Bedekar AS; Feng J; Sundaram S
    Clin Lab Med; 2007 Mar; 27(1):41-59. PubMed ID: 17416301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Valve Arrays for Drug Delivery in Organ-On-Chips.
    Gharib I; Sawan M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5025-5028. PubMed ID: 33019115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.