These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Photothermally generated bubble on fiber (BoF) for precise sensing and control of liquid flow along a microfluidic channel. Ma J; Wang G; Jin L; Oh K; Guan BO Opt Express; 2019 Jul; 27(14):19768-19777. PubMed ID: 31503732 [TBL] [Abstract][Full Text] [Related]
27. Flow control with hydrogels. Eddington DT; Beebe DJ Adv Drug Deliv Rev; 2004 Feb; 56(2):199-210. PubMed ID: 14741116 [TBL] [Abstract][Full Text] [Related]
28. Photoresponsive Passive Micromixers Based on Spiropyran Size-Tunable Hydrogels. Ter Schiphorst J; Melpignano GG; Amirabadi HE; Houben MHJM; Bakker S; den Toonder JMJ; Schenning APHJ Macromol Rapid Commun; 2018 Jan; 39(1):. PubMed ID: 28418112 [TBL] [Abstract][Full Text] [Related]
30. Integrated Elastomeric Components for Autonomous Regulation of Sequential and Oscillatory Flow Switching in Microfluidic Devices. Mosadegh B; Kuo CH; Tung YC; Torisawa YS; Bersano-Begey T; Tavana H; Takayama S Nat Phys; 2010 Jun; 6(6):433-437. PubMed ID: 20526435 [TBL] [Abstract][Full Text] [Related]
31. Integrated microfluidic systems for DNA analysis. Njoroge SK; Chen HW; Witek MA; Soper SA Top Curr Chem; 2011; 304():203-60. PubMed ID: 21607848 [TBL] [Abstract][Full Text] [Related]
32. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations. Waldbaur A; Kittelmann J; Radtke CP; Hubbuch J; Rapp BE Lab Chip; 2013 Jun; 13(12):2337-43. PubMed ID: 23639992 [TBL] [Abstract][Full Text] [Related]
33. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing. Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248 [TBL] [Abstract][Full Text] [Related]
35. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics. Wu CY; Lu JC; Liu MC; Tung YC Lab Chip; 2012 Oct; 12(20):3943-51. PubMed ID: 22842773 [TBL] [Abstract][Full Text] [Related]
36. Hydrogel-based reconfigurable components for microfluidic devices. Kim D; Beebe DJ Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621 [TBL] [Abstract][Full Text] [Related]
37. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications. Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247 [TBL] [Abstract][Full Text] [Related]
39. Fully integrated miniature device for automated gene expression DNA microarray processing. Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436 [TBL] [Abstract][Full Text] [Related]
40. A multifunctional microfluidic platform for generation, trapping and release of droplets in a double laminar flow. Carreras MP; Wang S J Biotechnol; 2017 Jun; 251():106-111. PubMed ID: 28450257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]