These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 32901040)

  • 41. Agricultural diversification in West Africa: an archaeobotanical study of the site of Sadia (Dogon Country, Mali).
    Champion L; Fuller DQ; Ozainne S; Huysecom É; Mayor A
    Archaeol Anthropol Sci; 2021; 13(4):60. PubMed ID: 33758626
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history.
    Li Y; Cao K; Zhu G; Fang W; Chen C; Wang X; Zhao P; Guo J; Ding T; Guan L; Zhang Q; Guo W; Fei Z; Wang L
    Genome Biol; 2019 Feb; 20(1):36. PubMed ID: 30791928
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genomic footprints of sorghum domestication and breeding selection for multiple end uses.
    Wu X; Liu Y; Luo H; Shang L; Leng C; Liu Z; Li Z; Lu X; Cai H; Hao H; Jing HC
    Mol Plant; 2022 Mar; 15(3):537-551. PubMed ID: 34999019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci.
    Mamidi S; Healey A; Huang P; Grimwood J; Jenkins J; Barry K; Sreedasyam A; Shu S; Lovell JT; Feldman M; Wu J; Yu Y; Chen C; Johnson J; Sakakibara H; Kiba T; Sakurai T; Tavares R; Nusinow DA; Baxter I; Schmutz J; Brutnell TP; Kellogg EA
    Nat Biotechnol; 2020 Oct; 38(10):1203-1210. PubMed ID: 33020633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet.
    Chen J; Liu Y; Liu M; Guo W; Wang Y; He Q; Chen W; Liao Y; Zhang W; Gao Y; Dong K; Ren R; Yang T; Zhang L; Qi M; Li Z; Zhao M; Wang H; Wang J; Qiao Z; Li H; Jiang Y; Liu G; Song X; Deng Y; Li H; Yan F; Dong Y; Li Q; Li T; Yang W; Cui J; Wang H; Zhou Y; Zhang X; Jia G; Lu P; Zhi H; Tang S; Diao X
    Nat Genet; 2023 Dec; 55(12):2243-2254. PubMed ID: 38036791
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unraveling Origin, History, Genetics, and Strategies for Accelerated Domestication and Diversification of Food Legumes.
    Ambika ; Aski MS; Gayacharan ; Hamwieh A; Talukdar A; Kumar Gupta S; Sharma BB; Joshi R; Upadhyaya HD; Singh K; Kumar R
    Front Genet; 2022; 13():932430. PubMed ID: 35979429
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals.
    Sinha D; Maurya AK; Abdi G; Majeed M; Agarwal R; Mukherjee R; Ganguly S; Aziz R; Bhatia M; Majgaonkar A; Seal S; Das M; Banerjee S; Chowdhury S; Adeyemi SB; Chen JT
    Genes (Basel); 2023 Jul; 14(7):. PubMed ID: 37510388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Rise and Fall of African Rice Cultivation Revealed by Analysis of 246 New Genomes.
    Cubry P; Tranchant-Dubreuil C; Thuillet AC; Monat C; Ndjiondjop MN; Labadie K; Cruaud C; Engelen S; Scarcelli N; Rhoné B; Burgarella C; Dupuy C; Larmande P; Wincker P; François O; Sabot F; Vigouroux Y
    Curr Biol; 2018 Jul; 28(14):2274-2282.e6. PubMed ID: 29983312
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Parallel Seed Color Adaptation during Multiple Domestication Attempts of an Ancient New World Grain.
    Stetter MG; Vidal-Villarejo M; Schmid KJ
    Mol Biol Evol; 2020 May; 37(5):1407-1419. PubMed ID: 31860092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A map of rice genome variation reveals the origin of cultivated rice.
    Huang X; Kurata N; Wei X; Wang ZX; Wang A; Zhao Q; Zhao Y; Liu K; Lu H; Li W; Guo Y; Lu Y; Zhou C; Fan D; Weng Q; Zhu C; Huang T; Zhang L; Wang Y; Feng L; Furuumi H; Kubo T; Miyabayashi T; Yuan X; Xu Q; Dong G; Zhan Q; Li C; Fujiyama A; Toyoda A; Lu T; Feng Q; Qian Q; Li J; Han B
    Nature; 2012 Oct; 490(7421):497-501. PubMed ID: 23034647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetic architecture and QTL selection response for Kernza perennial grain domestication traits.
    Crain J; Larson S; Dorn K; DeHaan L; Poland J
    Theor Appl Genet; 2022 Aug; 135(8):2769-2784. PubMed ID: 35763029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Population genomic analysis reveals domestication of cultivated rye from weedy rye.
    Sun Y; Shen E; Hu Y; Wu D; Feng Y; Lao S; Dong C; Du T; Hua W; Ye CY; Zhu J; Zhu QH; Cai D; Skuza L; Qiu J; Fan L
    Mol Plant; 2022 Mar; 15(3):552-561. PubMed ID: 34971791
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genomic resources in plant breeding for sustainable agriculture.
    Thudi M; Palakurthi R; Schnable JC; Chitikineni A; Dreisigacker S; Mace E; Srivastava RK; Satyavathi CT; Odeny D; Tiwari VK; Lam HM; Hong YB; Singh VK; Li G; Xu Y; Chen X; Kaila S; Nguyen H; Sivasankar S; Jackson SA; Close TJ; Shubo W; Varshney RK
    J Plant Physiol; 2021 Feb; 257():153351. PubMed ID: 33412425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Natural variation and genetic loci underlying resistance to grain shattering in standing crop of modern wheat.
    Emebiri L; Hildebrand S
    Mol Genet Genomics; 2023 Sep; 298(5):1211-1224. PubMed ID: 37410105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hotter, drier, CRISPR: the latest edit on climate change.
    Massel K; Lam Y; Wong ACS; Hickey LT; Borrell AK; Godwin ID
    Theor Appl Genet; 2021 Jun; 134(6):1691-1709. PubMed ID: 33420514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A single base change explains the independent origin of and selection for the nonshattering gene in African rice domestication.
    Win KT; Yamagata Y; Doi K; Uyama K; Nagai Y; Toda Y; Kani T; Ashikari M; Yasui H; Yoshimura A
    New Phytol; 2017 Mar; 213(4):1925-1935. PubMed ID: 27861933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of cooking on the total antioxidant capacity and phenolic profile of some whole-meal African cereals.
    N'Dri D; Mazzeo T; Zaupa M; Ferracane R; Fogliano V; Pellegrini N
    J Sci Food Agric; 2013 Jan; 93(1):29-36. PubMed ID: 22886608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maintenance and expansion of genetic and trait variation following domestication in a clonal crop.
    White OW; Biswas MK; Abebe WM; Dussert Y; Kebede F; Nichols RA; Buggs RJA; Demissew S; Woldeyes F; Papadopulos AST; Schwarzacher T; Heslop-Harrison PJS; Wilkin P; Borrell JS
    Mol Ecol; 2023 Aug; 32(15):4165-4180. PubMed ID: 37264989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PopAmaranth: a population genetic genome browser for grain amaranths and their wild relatives.
    Gonçalves-Dias J; Stetter MG
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33822034
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops.
    Rogo U; Simoni S; Fambrini M; Giordani T; Pugliesi C; Mascagni F
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.