These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32901058)

  • 1. Representation of edges, head direction, and swimming kinematics in the brain of freely-navigating fish.
    Vinepinsky E; Cohen L; Perchik S; Ben-Shahar O; Donchin O; Segev R
    Sci Rep; 2020 Sep; 10(1):14762. PubMed ID: 32901058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless Electrophysiological Recording of Neurons by Movable Tetrodes in Freely Swimming Fish.
    Cohen L; Vinepinsky E; Segev R
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31840665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boundary vector cells in the goldfish central telencephalon encode spatial information.
    Cohen L; Vinepinsky E; Donchin O; Segev R
    PLoS Biol; 2023 Apr; 21(4):e3001747. PubMed ID: 37097992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless electrophysiology of the brain of freely swimming goldfish.
    Vinepinsky E; Donchin O; Segev R
    J Neurosci Methods; 2017 Feb; 278():76-86. PubMed ID: 28069391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional spatial representation in freely swimming fish.
    Burt de Perera T; Holbrook RI
    Cogn Process; 2012 Aug; 13 Suppl 1():S107-11. PubMed ID: 22915259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural basis of the spatial navigation based on geometric cues.
    Vargas JP; Portavella M; Quintero E; López JC
    Behav Brain Res; 2011 Nov; 225(1):367-72. PubMed ID: 21803075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation.
    Fotowat H; Lee C; Jun JJ; Maler L
    Elife; 2019 Apr; 8():. PubMed ID: 30942169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for chronic neural recording in the telencephalon of freely behaving fish.
    Canfield JG; Mizumori SJ
    J Neurosci Methods; 2004 Feb; 133(1-2):127-34. PubMed ID: 14757353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of C-start behaviors with neural activity recorded from the hindbrain in free-swimming goldfish (Carassius auratus).
    Weiss SA; Zottoli SJ; Do SC; Faber DS; Preuss T
    J Exp Biol; 2006 Dec; 209(Pt 23):4788-801. PubMed ID: 17114411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical analysis reveals individuality of locomotion in goldfish.
    Neumeister H; Cellucci CJ; Rapp PE; Korn H; Faber DS
    J Exp Biol; 2004 Feb; 207(Pt 4):697-708. PubMed ID: 14718512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of C-starts, equilibrium and targeted feeding after whole spinal cord crush in the adult goldfish Carassius auratus.
    Zottoli SJ; Freemer MM
    J Exp Biol; 2003 Sep; 206(Pt 17):3015-29. PubMed ID: 12878670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes.
    Fu C; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Mar; 164(3):456-65. PubMed ID: 23269108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey.
    Deliagina TG; Zelenin PV; Fagerstedt P; Grillner S; Orlovsky GN
    J Neurophysiol; 2000 Feb; 83(2):853-63. PubMed ID: 10669499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of partial ablation of the cerebellum on sustained swimming in goldfish.
    Matsumoto N; Yoshida M; Uematsu K
    Brain Behav Evol; 2007; 70(2):105-14. PubMed ID: 17519524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and slow recovery phases of goldfish behavior after transection of the optic nerve revealed by a computer image processing system.
    Kato S; Devadas M; Okada K; Shimada Y; Ohkawa M; Muramoto K; Takizawa N; Matsukawa T
    Neuroscience; 1999; 93(3):907-14. PubMed ID: 10473256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of telencephalic ablation on shoaling behavior in goldfish.
    Shinozuka K; Watanabe S
    Physiol Behav; 2004 Mar; 81(1):141-8. PubMed ID: 15059693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection.
    Hanke W; Brücker C; Bleckmann H
    J Exp Biol; 2000 Apr; 203(Pt 7):1193-200. PubMed ID: 10708639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli.
    Mogdans J; Bleckmann H; Menger N
    Brain Behav Evol; 1997; 50(5):261-83. PubMed ID: 9360004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog.
    Girdhar K; Gruebele M; Chemla YR
    PLoS One; 2015; 10(7):e0128668. PubMed ID: 26132396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models.
    Lim JL; Lauder GV
    Bioinspir Biomim; 2016 Jul; 11(4):046006. PubMed ID: 27378052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.