These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32901245)

  • 1. Lateralized Cerebral Processing of Abstract Linguistic Structure in Clear and Degraded Speech.
    Meng Q; Hegner YL; Giblin I; McMahon C; Johnson BW
    Cereb Cortex; 2021 Jan; 31(1):591-602. PubMed ID: 32901245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontotemporal activation differs between perception of simulated cochlear implant speech and speech in background noise: An image-based fNIRS study.
    Defenderfer J; Forbes S; Wijeakumar S; Hedrick M; Plyler P; Buss AT
    Neuroimage; 2021 Oct; 240():118385. PubMed ID: 34256138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural tracking measures of speech intelligibility: Manipulating intelligibility while keeping acoustics unchanged.
    Karunathilake IMD; Kulasingham JP; Simon JZ
    Proc Natl Acad Sci U S A; 2023 Dec; 120(49):e2309166120. PubMed ID: 38032934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Information-bearing acoustic change outperforms duration in predicting intelligibility of full-spectrum and noise-vocoded sentences.
    Stilp CE
    J Acoust Soc Am; 2014 Mar; 135(3):1518-29. PubMed ID: 24606287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural tracking of speech envelope does not unequivocally reflect intelligibility.
    Kösem A; Dai B; McQueen JM; Hagoort P
    Neuroimage; 2023 May; 272():120040. PubMed ID: 36935084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of visual cues on top-down restoration of temporally interrupted speech, with and without further degradations.
    Benard MR; Başkent D
    Hear Res; 2015 Oct; 328():24-33. PubMed ID: 26117407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic richness modulates the neural networks supporting intelligible speech processing.
    Lee YS; Min NE; Wingfield A; Grossman M; Peelle JE
    Hear Res; 2016 Mar; 333():108-117. PubMed ID: 26723103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Cortical Responses to Noise-Vocoded Speech in Children with Normal Hearing Using Functional Near-Infrared Spectroscopy (fNIRS).
    Mushtaq F; Wiggins IM; Kitterick PT; Anderson CA; Hartley DEH
    J Assoc Res Otolaryngol; 2021 Dec; 22(6):703-717. PubMed ID: 34581879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical correlates of speech intelligibility measured using functional near-infrared spectroscopy (fNIRS).
    Lawrence RJ; Wiggins IM; Anderson CA; Davies-Thompson J; Hartley DEH
    Hear Res; 2018 Dec; 370():53-64. PubMed ID: 30292959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of speech degradation on top-down repair: phonemic restoration with simulations of cochlear implants and combined electric-acoustic stimulation.
    Başkent D
    J Assoc Res Otolaryngol; 2012 Oct; 13(5):683-92. PubMed ID: 22569838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of consonant landmarks to speech recognition in simulated acoustic-electric hearing.
    Chen F; Loizou PC
    Ear Hear; 2010 Apr; 31(2):259-67. PubMed ID: 20081538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-compression thresholds for Mandarin sentences in normal-hearing and cochlear implant listeners.
    Meng Q; Wang X; Cai Y; Kong F; Buck AN; Yu G; Zheng N; Schnupp JWH
    Hear Res; 2019 Mar; 374():58-68. PubMed ID: 30732921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Additional Low-Pass-Filtered Speech on Listening Effort for Noise-Band-Vocoded Speech in Quiet and in Noise.
    Pals C; Sarampalis A; van Dijk M; Başkent D
    Ear Hear; 2019; 40(1):3-17. PubMed ID: 29757801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pure linguistic interference during comprehension of competing speech signals.
    Dai B; McQueen JM; Hagoort P; Kösem A
    J Acoust Soc Am; 2017 Mar; 141(3):EL249. PubMed ID: 28372048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient and sustained cortical activity elicited by connected speech of varying intelligibility.
    Tiitinen H; Miettinen I; Alku P; May PJ
    BMC Neurosci; 2012 Dec; 13():157. PubMed ID: 23276297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing.
    Williges B; Dietz M; Hohmann V; Jürgens T
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating cortical responses to speech in children: A functional near-infrared spectroscopy (fNIRS) study.
    Lawrence RJ; Wiggins IM; Hodgson JC; Hartley DEH
    Hear Res; 2021 Mar; 401():108155. PubMed ID: 33360183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An application of univariate and multivariate approaches in FMRI to quantifying the hemispheric lateralization of acoustic and linguistic processes.
    McGettigan C; Evans S; Rosen S; Agnew ZK; Shah P; Scott SK
    J Cogn Neurosci; 2012 Mar; 24(3):636-52. PubMed ID: 22066589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic simulation of cochlear implant hearing: Effect of manipulating various acoustic parameters on intelligibility of speech.
    Jain S; Vipin Ghosh PG
    Cochlear Implants Int; 2018 Jan; 19(1):46-53. PubMed ID: 29032744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of phase-locking to the temporal envelope of speech in auditory perception and speech intelligibility.
    Millman RE; Johnson SR; Prendergast G
    J Cogn Neurosci; 2015 Mar; 27(3):533-45. PubMed ID: 25244119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.