BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32901452)

  • 21. Digital gene expression profiling by 5'-end sequencing of cDNAs during reprogramming in the moss Physcomitrella patens.
    Nishiyama T; Miyawaki K; Ohshima M; Thompson K; Nagashima A; Hasebe M; Kurata T
    PLoS One; 2012; 7(5):e36471. PubMed ID: 22574165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens.
    Aoyama T; Hiwatashi Y; Shigyo M; Kofuji R; Kubo M; Ito M; Hasebe M
    Development; 2012 Sep; 139(17):3120-9. PubMed ID: 22833122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens.
    Imaizumi T; Kadota A; Hasebe M; Wada M
    Plant Cell; 2002 Feb; 14(2):373-86. PubMed ID: 11884681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytohormone biosynthesis and signaling pathways of mosses.
    Guillory A; Bonhomme S
    Plant Mol Biol; 2021 Nov; 107(4-5):245-277. PubMed ID: 34245404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens.
    Jang G; Dolan L
    New Phytol; 2011 Oct; 192(2):319-27. PubMed ID: 21707622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic aspects of auxin biosynthesis and its regulation.
    Brumos J; Alonso JM; Stepanova AN
    Physiol Plant; 2014 May; 151(1):3-12. PubMed ID: 24007561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cyclophilin DIAGEOTROPICA has a conserved role in auxin signaling.
    Lavy M; Prigge MJ; Tigyi K; Estelle M
    Development; 2012 Mar; 139(6):1115-24. PubMed ID: 22318226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots.
    Fujita T; Sakaguchi H; Hiwatashi Y; Wagstaff SJ; Ito M; Deguchi H; Sato T; Hasebe M
    Evol Dev; 2008; 10(2):176-86. PubMed ID: 18315811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell wall biology of the moss Physcomitrium patens.
    Ye ZH; Zhong R
    J Exp Bot; 2022 Jul; 73(13):4440-4453. PubMed ID: 35348679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NO GAMETOPHORES 2 Is a Novel Regulator of the 2D to 3D Growth Transition in the Moss Physcomitrella patens.
    Moody LA; Kelly S; Clayton R; Weeks Z; Emms DM; Langdale JA
    Curr Biol; 2021 Feb; 31(3):555-563.e4. PubMed ID: 33242390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants.
    Kato H; Nishihama R; Weijers D; Kohchi T
    J Exp Bot; 2018 Jan; 69(2):291-301. PubMed ID: 28992186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of the Development in Physcomitrium (Physcomitrella) patens implicates the functional differentiation of plant RNase H1s.
    Chen S; Dong X; Yang Z; Hou X; Liu L
    Plant Sci; 2021 Dec; 313():111070. PubMed ID: 34763863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physcomitrium patens PpRIC, an ancestral CRIB-domain ROP effector, inhibits auxin-induced differentiation of apical initial cells.
    Ntefidou M; Eklund DM; Le Bail A; Schulmeister S; Scherbel F; Brandl L; Dörfler W; Eichstädt C; Bannmüller A; Ljung K; Kost B
    Cell Rep; 2023 Feb; 42(2):112130. PubMed ID: 36790931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens.
    Sakakibara K; Nishiyama T; Sumikawa N; Kofuji R; Murata T; Hasebe M
    Development; 2003 Oct; 130(20):4835-46. PubMed ID: 12917289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis.
    Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T
    Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auxin biosynthesis: spatial regulation and adaptation to stress.
    Blakeslee JJ; Spatola Rossi T; Kriechbaumer V
    J Exp Bot; 2019 Oct; 70(19):5041-5049. PubMed ID: 31198972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasma membrane-targeted PIN proteins drive shoot development in a moss.
    Bennett TA; Liu MM; Aoyama T; Bierfreund NM; Braun M; Coudert Y; Dennis RJ; O'Connor D; Wang XY; White CD; Decker EL; Reski R; Harrison CJ
    Curr Biol; 2014 Dec; 24(23):2776-85. PubMed ID: 25448003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions.
    Suzuki H; Kohchi T; Nishihama R
    Cold Spring Harb Perspect Biol; 2021 Mar; 13(3):. PubMed ID: 33431584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.
    Suzuki M; Yamazaki C; Mitsui M; Kakei Y; Mitani Y; Nakamura A; Ishii T; Soeno K; Shimada Y
    Plant Cell Rep; 2015 Aug; 34(8):1343-52. PubMed ID: 25903543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms of reprogramming of differentiated cells into stem cells in the moss Physcomitrium patens.
    Ishikawa M; Hasebe M
    Curr Opin Plant Biol; 2022 Feb; 65():102123. PubMed ID: 34735974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.