These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 32901618)
1. Probing the binding modes and dynamics of histidine on fumed silica surfaces by solid-state NMR. Swanson HL; Guo C; Cao M; Addison JB; Holland GP Phys Chem Chem Phys; 2020 Sep; 22(36):20349-20361. PubMed ID: 32901618 [TBL] [Abstract][Full Text] [Related]
3. Ultrahigh field MAS NMR dipolar correlation spectroscopy of the histidine residues in light-harvesting complex II from photosynthetic bacteria reveals partial internal charge transfer in the B850/His complex. Alia ; Matysik J; Soede-Huijbregts C; Baldus M; Raap J; Lugtenburg J; Gast P; van Gorkom HJ; Hoff AJ; de Groot HJ J Am Chem Soc; 2001 May; 123(20):4803-9. PubMed ID: 11457290 [TBL] [Abstract][Full Text] [Related]
4. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by 1H solid-state NMR. Grünberg B; Emmler T; Gedat E; Shenderovich I; Findenegg GH; Limbach HH; Buntkowsky G Chemistry; 2004 Nov; 10(22):5689-96. PubMed ID: 15470692 [TBL] [Abstract][Full Text] [Related]
6. NMR detection of pH-dependent histidine-water proton exchange reveals the conduction mechanism of a transmembrane proton channel. Hu F; Schmidt-Rohr K; Hong M J Am Chem Soc; 2012 Feb; 134(8):3703-13. PubMed ID: 21974716 [TBL] [Abstract][Full Text] [Related]
7. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations. Dos A; Schimming V; Tosoni S; Limbach HH J Phys Chem B; 2008 Dec; 112(49):15604-15. PubMed ID: 19367899 [TBL] [Abstract][Full Text] [Related]
8. NMR studies of the role of hydrogen bonding in the mechanism of triosephosphate isomerase. Harris TK; Abeygunawardana C; Mildvan AS Biochemistry; 1997 Dec; 36(48):14661-75. PubMed ID: 9398185 [TBL] [Abstract][Full Text] [Related]
9. 15N- and 1H-NMR investigations of the active-site amino acids in semisynthetic RNase S' and RNase A. Knoblauch H; Rüterjans H; Bloemhoff W; Kerling KE Eur J Biochem; 1988 Mar; 172(2):485-97. PubMed ID: 2832166 [TBL] [Abstract][Full Text] [Related]
10. Interaction between histidine and Zn(II) metal ions over a wide pH as revealed by solid-state NMR spectroscopy and DFT calculations. Zhou L; Li S; Su Y; Yi X; Zheng A; Deng F J Phys Chem B; 2013 Aug; 117(30):8954-65. PubMed ID: 23841698 [TBL] [Abstract][Full Text] [Related]
11. 13C and 15N spectral editing inside histidine imidazole ring through solid-state NMR spectroscopy. Li S; Zhou L; Su Y; Han B; Deng F Solid State Nucl Magn Reson; 2013; 54():13-7. PubMed ID: 23731549 [TBL] [Abstract][Full Text] [Related]
12. Characterization of pH-dependent conformational heterogeneity in Rhodospirillum rubrum cytochrome c2 using 15N and 1H NMR. Yu LP; Smith GM Biochemistry; 1990 Mar; 29(12):2920-5. PubMed ID: 2159779 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a buried neutral histidine residue in Bacillus circulans xylanase: NMR assignments, pH titration, and hydrogen exchange. Plesniak LA; Connelly GP; Wakarchuk WW; McIntosh LP Protein Sci; 1996 Nov; 5(11):2319-28. PubMed ID: 8931150 [TBL] [Abstract][Full Text] [Related]
14. Revealing weak histidine Tan C; Chen Y; Peng X; Chen Z; Cai S; Cross TA; Fu R J Magn Reson; 2020 Jul; 316():106757. PubMed ID: 32535401 [TBL] [Abstract][Full Text] [Related]
15. The roles of Glu-327 and His-446 in the bisphosphatase reaction of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by NMR spectroscopic and mutational analyses of the enzyme in the transient phosphohistidine intermediate complex. Okar DA; Live DH; Kirby TL; Karschnia EJ; von Weymarn LB; Armitage IM; Lange AJ Biochemistry; 1999 Apr; 38(14):4471-9. PubMed ID: 10194369 [TBL] [Abstract][Full Text] [Related]
16. 13C NMR lineshapes of acetone adsorbed on silica. Tao T; Pan VH; Zhou JW; Maciel GE Solid State Nucl Magn Reson; 2000; 17(1-4):52-75. PubMed ID: 11235028 [TBL] [Abstract][Full Text] [Related]
17. Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR. Li S; Hong M J Am Chem Soc; 2011 Feb; 133(5):1534-44. PubMed ID: 21207964 [TBL] [Abstract][Full Text] [Related]
18. Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. de Groot HJ; Smith SO; Courtin J; van den Berg E; Winkel C; Lugtenburg J; Griffin RG; Herzfeld J Biochemistry; 1990 Jul; 29(29):6873-83. PubMed ID: 2168744 [TBL] [Abstract][Full Text] [Related]
19. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. Wylie BJ; Franks WT; Rienstra CM J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346 [TBL] [Abstract][Full Text] [Related]
20. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations. Hass MA; Thuesen MH; Christensen HE; Led JJ J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]