These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 3290193)

  • 1. Expression of double-stranded-RNA-specific RNase III of Escherichia coli is lethal to Saccharomyces cerevisiae.
    Pines O; Yoon HJ; Inouye M
    J Bacteriol; 1988 Jul; 170(7):2989-93. PubMed ID: 3290193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III--the effect of dsRNA binding on gene expression.
    Dasgupta S; Fernandez L; Kameyama L; Inada T; Nakamura Y; Pappas A; Court DL
    Mol Microbiol; 1998 May; 28(3):629-40. PubMed ID: 9632264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage.
    Lamontagne B; Tremblay A; Abou Elela S
    Mol Cell Biol; 2000 Feb; 20(4):1104-15. PubMed ID: 10648595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of a double-stranded ribonuclease from the yeast Saccharomyces cerevisiae.
    Mead DJ; Oliver SG
    Eur J Biochem; 1983 Dec; 137(3):501-7. PubMed ID: 6363060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism.
    Lamontagne B; Larose S; Boulanger J; Elela SA
    Curr Issues Mol Biol; 2001 Oct; 3(4):71-8. PubMed ID: 11719970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain.
    Sun W; Jun E; Nicholson AW
    Biochemistry; 2001 Dec; 40(49):14976-84. PubMed ID: 11732918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns.
    Danin-Kreiselman M; Lee CY; Chanfreau G
    Mol Cell; 2003 May; 11(5):1279-89. PubMed ID: 12769851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The non-RNase H domain of Saccharomyces cerevisiae RNase H1 binds double-stranded RNA: magnesium modulates the switch between double-stranded RNA binding and RNase H activity.
    Cerritelli SM; Crouch RJ
    RNA; 1995 May; 1(3):246-59. PubMed ID: 7489497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate structure requirements of the Pac1 ribonuclease from Schizosaccharmyces pombe.
    Rotondo G; Huang JY; Frendewey D
    RNA; 1997 Oct; 3(10):1182-93. PubMed ID: 9326493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lethal double-stranded RNA processing activity of ribonuclease III in the absence of suhB protein of Escherichia coli.
    Inada T; Nakamura Y
    Biochimie; 1995; 77(4):294-302. PubMed ID: 8589060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence dependence of substrate recognition and cleavage by yeast RNase III.
    Lamontagne B; Ghazal G; Lebars I; Yoshizawa S; Fourmy D; Elela SA
    J Mol Biol; 2003 Apr; 327(5):985-1000. PubMed ID: 12662924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the rnc-97 mutation of RNAaseIII: a glycine to glutamate substitution increases the requirement for magnesium ions.
    Davidov Y; Rahat A; Flechner I; Pines O
    J Gen Microbiol; 1993 Apr; 139(4):717-24. PubMed ID: 8515231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Amarasinghe AK; Nicholson AW
    Nucleic Acids Res; 2001 May; 29(9):1915-25. PubMed ID: 11328875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of yeast mitochondrial RNase P: an intact RNA subunit is not essential for activity in vitro.
    Morales MJ; Wise CA; Hollingsworth MJ; Martin NC
    Nucleic Acids Res; 1989 Sep; 17(17):6865-81. PubMed ID: 2476723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable hok, srnB and pndA effector messenger RNAs.
    Gerdes K; Nielsen A; Thorsted P; Wagner EG
    J Mol Biol; 1992 Aug; 226(3):637-49. PubMed ID: 1380562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III.
    Wu H; Yang PK; Butcher SE; Kang S; Chanfreau G; Feigon J
    EMBO J; 2001 Dec; 20(24):7240-9. PubMed ID: 11743000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5'-AGNN-3' tetraloop.
    Nagel R; Ares M
    RNA; 2000 Aug; 6(8):1142-56. PubMed ID: 10943893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, characterization, and effects of overexpression of the Escherichia coli rnd gene encoding RNase D.
    Zhang JR; Deutscher MP
    J Bacteriol; 1988 Feb; 170(2):522-7. PubMed ID: 2828310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved RNA motif involved in divalent cation utilization by nuclear RNase P.
    Pagán-Ramos E; Lee Y; Engelke DR
    RNA; 1996 Nov; 2(11):1100-9. PubMed ID: 8903341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rescue of the fission yeast snRNA synthesis mutant snm1 by overexpression of the double-strand-specific Pac1 ribonuclease.
    Rotondo G; Gillespie M; Frendewey D
    Mol Gen Genet; 1995 Jun; 247(6):698-708. PubMed ID: 7616961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.