These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 32902167)
1. Leachable-Free Fabrication of Hydrogel Foams Enabling Homogeneous Viability of Encapsulated Cells in Large-Volume Constructs. Salvador T; Oliveira MB; Mano JF Adv Healthc Mater; 2020 Oct; 9(20):e2000543. PubMed ID: 32902167 [TBL] [Abstract][Full Text] [Related]
2. Nano-Silicate-Reinforced and SDF-1α-Loaded Gelatin-Methacryloyl Hydrogel for Bone Tissue Engineering. Shi Z; Xu Y; Mulatibieke R; Zhong Q; Pan X; Chen Y; Lian Q; Luo X; Shi Z; Zhu Q Int J Nanomedicine; 2020; 15():9337-9353. PubMed ID: 33262591 [TBL] [Abstract][Full Text] [Related]
3. Free radical-scavenging composite gelatin methacryloyl hydrogels for cell encapsulation. Lee GM; Kim SJ; Kim EM; Kim E; Lee S; Lee E; Park HH; Shin H Acta Biomater; 2022 Sep; 149():96-110. PubMed ID: 35779769 [TBL] [Abstract][Full Text] [Related]
4. Highly Porous Gas-Blown Hydrogels for Direct Cell Encapsulation with High Cell Viability. Beaman HT; Monroe MBB Tissue Eng Part A; 2023 Jun; 29(11-12):308-321. PubMed ID: 36772801 [TBL] [Abstract][Full Text] [Related]
5. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Monteiro N; Thrivikraman G; Athirasala A; Tahayeri A; França CM; Ferracane JL; Bertassoni LE Dent Mater; 2018 Mar; 34(3):389-399. PubMed ID: 29199008 [TBL] [Abstract][Full Text] [Related]
7. Effects of mechanical properties of gelatin methacryloyl hydrogels on encapsulated stem cell spheroids for 3D tissue engineering. Kim EM; Lee GM; Lee S; Kim SJ; Lee D; Yoon DS; Joo J; Kong H; Park HH; Shin H Int J Biol Macromol; 2022 Jan; 194():903-913. PubMed ID: 34838857 [TBL] [Abstract][Full Text] [Related]
8. In Situ Oxygen Generation Enhances the SCAP Survival in Hydrogel Constructs. Zou T; Jiang S; Zhang Y; Liu J; Yi B; Qi Y; Dissanayaka WL; Zhang C J Dent Res; 2021 Sep; 100(10):1127-1135. PubMed ID: 34328028 [TBL] [Abstract][Full Text] [Related]
9. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Naghizadeh Z; Karkhaneh A; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097 [TBL] [Abstract][Full Text] [Related]
10. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
11. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable cell-laden starch foams for the rapid fabrication of 3D tissue constructs and the application in neural tissue engineering. Wen X; Shen M; Bai Y; Xu C; Han X; Yang H; Yang L J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):104-116. PubMed ID: 30916468 [TBL] [Abstract][Full Text] [Related]
13. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs. Pahoff S; Meinert C; Bas O; Nguyen L; Klein TJ; Hutmacher DW J Mater Chem B; 2019 Mar; 7(10):1761-1772. PubMed ID: 32254918 [TBL] [Abstract][Full Text] [Related]
14. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Shin SR; Zihlmann C; Akbari M; Assawes P; Cheung L; Zhang K; Manoharan V; Zhang YS; Yüksekkaya M; Wan KT; Nikkhah M; Dokmeci MR; Tang XS; Khademhosseini A Small; 2016 Jul; 12(27):3677-89. PubMed ID: 27254107 [TBL] [Abstract][Full Text] [Related]
15. Photocrosslinkable methacrylated gelatin hydrogel as a cell-friendly injectable delivery system for chlorhexidine in regenerative endodontics. Ribeiro JS; Sanz CK; Münchow EA; Kalra N; Dubey N; Suárez CEC; Fenno JC; Lund RG; Bottino MC Dent Mater; 2022 Sep; 38(9):1507-1517. PubMed ID: 35882570 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of site selective photo-crosslinkable glycidyl methacrylate functionalized gelatin-based 3D hydrogel scaffold for liver tissue engineering. Sk MM; Das P; Panwar A; Tan LP Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111694. PubMed ID: 33812568 [TBL] [Abstract][Full Text] [Related]
17. Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering. Cui J; Wang H; Shi Q; Sun T; Huang Q; Fukuda T Molecules; 2019 May; 24(9):. PubMed ID: 31067670 [TBL] [Abstract][Full Text] [Related]
18. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856 [TBL] [Abstract][Full Text] [Related]