These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 32902265)
1. Simultaneous Sulfite Electrolysis and Hydrogen Production Using Ni Foam-Based Three-Dimensional Electrodes. Márquez-Montes RA; Kawashima K; Vo KM; Chávez-Flores D; Collins-Martínez VH; Mullins CB; Ramos-Sánchez VH Environ Sci Technol; 2020 Oct; 54(19):12511-12520. PubMed ID: 32902265 [TBL] [Abstract][Full Text] [Related]
2. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode. Cai W; Liu W; Han J; Wang A Biosens Bioelectron; 2016 Jun; 80():118-122. PubMed ID: 26807526 [TBL] [Abstract][Full Text] [Related]
3. Regenerable Nickel-Functionalized Activated Carbon Cathodes Enhanced by Metal Adsorption to Improve Hydrogen Production in Microbial Electrolysis Cells. Kim KY; Yang W; Logan BE Environ Sci Technol; 2018 Jun; 52(12):7131-7137. PubMed ID: 29845859 [TBL] [Abstract][Full Text] [Related]
4. Influence of Nickel molybdate nanocatalyst for enhancing biohydrogen production in microbial electrolysis cell utilizing sugar industrial effluent. Jayabalan T; Matheswaran M; Radhakrishnan TK; Naina Mohamed S Bioresour Technol; 2021 Jan; 320(Pt A):124284. PubMed ID: 33137640 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen production by traditional and novel alkaline water electrolysis on nickel or iron based electrocatalysts. Zhang R; Xie A; Cheng L; Bai Z; Tang Y; Wan P Chem Commun (Camb); 2023 Jun; 59(53):8205-8221. PubMed ID: 37293866 [TBL] [Abstract][Full Text] [Related]
6. Self-supported amorphous phosphide catalytic electrodes for electrochemical hydrogen production coupling with methanol upgrading. Chang J; Wang W; Wu D; Xu F; Jiang K; Guo Y; Gao Z J Colloid Interface Sci; 2023 Oct; 648():259-269. PubMed ID: 37301150 [TBL] [Abstract][Full Text] [Related]
7. Promotion of Phenol Electro-oxidation by Oxygen Evolution Reaction on an Active Electrode for Efficient Pollution Control and Hydrogen Evolution. Qin H; Wei X; Ye Z; Liu X; Mao S Environ Sci Technol; 2022 May; 56(9):5753-5762. PubMed ID: 35420409 [TBL] [Abstract][Full Text] [Related]
8. Enhanced wettability improves catalytic activity of nickel-functionalized activated carbon cathode for hydrogen production in microbial electrolysis cells. Moreno-Jimenez DA; Kim KY Bioresour Technol; 2022 Apr; 350():126881. PubMed ID: 35217164 [TBL] [Abstract][Full Text] [Related]
9. Taking Advantage of Potential Coincidence Region: Insights into Gas Production Behavior in Advanced Self-Activated Hydrazine-Assisted Alkaline Seawater Electrolysis. Wang HY; Zhai S; Wang H; Yan F; Ren JT; Wang L; Sun M; Yuan ZY ACS Nano; 2024 Jul; ():. PubMed ID: 39012051 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen and Potassium Acetate Co-Production from Electrochemical Reforming of Ethanol at Ultrathin Cobalt Sulfide Nanosheets on Nickel Foam. Ding Y; Xue Q; Hong QL; Li FM; Jiang YC; Li SN; Chen Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4026-4033. PubMed ID: 33459016 [TBL] [Abstract][Full Text] [Related]
11. Cu-induced NiCu-P and NiCu-Pi with multilayered nanostructures as highly efficient electrodes for hydrogen production Xu X; Ji S; Wang H; Wang X; Linkov V; Wang P; Pan L; Wang G; Wang R Nanoscale; 2022 Nov; 14(44):16490-16501. PubMed ID: 36278435 [TBL] [Abstract][Full Text] [Related]
12. Removal of sulfide, sulfate and sulfite ions by electro coagulation. Murugananthan M; Raju GB; Prabhakar S J Hazard Mater; 2004 Jun; 109(1-3):37-44. PubMed ID: 15177743 [TBL] [Abstract][Full Text] [Related]
13. Efficiency and mechanisms of simultaneous removal of Microcystis aeruginosa and microcystins by electrochemical technology using activated carbon fiber/nickel foam as cathode material. Lian H; Xiang P; Xue Y; Jiang Y; Li M; Mo J Chemosphere; 2020 Aug; 252():126431. PubMed ID: 32208197 [TBL] [Abstract][Full Text] [Related]
14. Efficient electrochemical production of glucaric acid and H Liu WJ; Xu Z; Zhao D; Pan XQ; Li HC; Hu X; Fan ZY; Wang WK; Zhao GH; Jin S; Huber GW; Yu HQ Nat Commun; 2020 Jan; 11(1):265. PubMed ID: 31937783 [TBL] [Abstract][Full Text] [Related]
15. A Nickel- and Cerium-Doped Zeolite Composite: An Affordable Cathode Material for Biohydrogen Production in Microbial Electrolysis Cells. Wang J; Li Y; Liu M; Li Z; Gao X; Yang D Chempluschem; 2020 Oct; 85(10):2290-2297. PubMed ID: 32965086 [TBL] [Abstract][Full Text] [Related]
16. Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoO Yu X; Dos Santos EC; White J; Salazar-Alvarez G; Pettersson LGM; Cornell A; Johnsson M Small; 2021 Nov; 17(44):e2104288. PubMed ID: 34596974 [TBL] [Abstract][Full Text] [Related]
17. Nanoporous Nickel Cathode with an Electrostatic Chlorine-Resistant Surface for Industrial Seawater Electrolysis Hydrogen Production. Wang J; Li Y; Xu T; Zheng J; Xiao K; Sun B; Ge M; Yuan X; Zhou C; Cai Z Inorg Chem; 2024 Apr; 63(13):5773-5778. PubMed ID: 38498977 [TBL] [Abstract][Full Text] [Related]
18. P-Doped Iron-Nickel Sulfide Nanosheet Arrays for Highly Efficient Overall Water Splitting. Liu C; Jia D; Hao Q; Zheng X; Li Y; Tang C; Liu H; Zhang J; Zheng X ACS Appl Mater Interfaces; 2019 Aug; 11(31):27667-27676. PubMed ID: 31303002 [TBL] [Abstract][Full Text] [Related]
19. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting. Teng X; Wang J; Ji L; Lv Y; Chen Z Nanoscale; 2018 May; 10(19):9276-9285. PubMed ID: 29736520 [TBL] [Abstract][Full Text] [Related]
20. Synergistic Nanotubular Copper-Doped Nickel Catalysts for Hydrogen Evolution Reactions. Sun Q; Dong Y; Wang Z; Yin S; Zhao C Small; 2018 Apr; 14(14):e1704137. PubMed ID: 29484816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]