These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32902272)

  • 1. Development of Robust Heterogeneous Chiral Rhodium Catalysts Utilizing Acid-Base and Electrostatic Interactions for Efficient Continuous-Flow Asymmetric Hydrogenations.
    Saito Y; Kobayashi S
    J Am Chem Soc; 2020 Sep; 142(39):16546-16551. PubMed ID: 32902272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral Rhodium Nanoparticle-Catalyzed Asymmetric Arylation Reactions.
    Yasukawa T; Miyamura H; Kobayashi S
    Acc Chem Res; 2020 Dec; 53(12):2950-2963. PubMed ID: 33259184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-Flow Enantioselective Hydroacylations under Heterogeneous Chiral Rhodium Catalysts.
    Saito Y; Kobayashi S
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202313778. PubMed ID: 37991463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions.
    Xie JH; Zhou QL
    Acc Chem Res; 2008 May; 41(5):581-93. PubMed ID: 18311931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric hydrogenation using monodentate phosphoramidite ligands.
    Minnaard AJ; Feringa BL; Lefort L; de Vries JG
    Acc Chem Res; 2007 Dec; 40(12):1267-77. PubMed ID: 17705446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a continuous-flow system for asymmetric hydrogenation using self-supported chiral catalysts.
    Shi L; Wang X; Sandoval CA; Wang Z; Li H; Wu J; Yu L; Ding K
    Chemistry; 2009 Sep; 15(38):9855-67. PubMed ID: 19685536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral Heterogeneous Scandium Lewis Acid Catalysts for Continuous-Flow Enantioselective Friedel-Crafts Carbon-Carbon Bond-Forming Reactions.
    Saito Y; Kobayashi S
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26566-26570. PubMed ID: 34661969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frustrated Lewis Pairs Catalyzed Asymmetric Metal-Free Hydrogenations and Hydrosilylations.
    Meng W; Feng X; Du H
    Acc Chem Res; 2018 Jan; 51(1):191-201. PubMed ID: 29243918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids.
    Zhu SF; Zhou QL
    Acc Chem Res; 2017 Apr; 50(4):988-1001. PubMed ID: 28374998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging Chiral Zr(IV)-Based Metal-Organic Frameworks To Elucidate Catalytically Active Rh Species in Asymmetric Hydrogenation Reactions.
    Gong W; Chen X; Zhang W; Kirlikovali KO; Nan B; Chen Z; Si R; Liu Y; Farha OK; Cui Y
    J Am Chem Soc; 2022 Feb; 144(7):3117-3126. PubMed ID: 35148083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catechol-based phosphoramidites: a new class of chiral ligands for rhodium-catalyzed asymmetric hydrogenations.
    Hoen R; van den Berg M; Bernsmann H; Minnaard AJ; de Vries JG; Feringa BL
    Org Lett; 2004 Apr; 6(9):1433-6. PubMed ID: 15101760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rigid P-chiral phosphine ligands with tert-butylmethylphosphino groups for rhodium-catalyzed asymmetric hydrogenation of functionalized alkenes.
    Imamoto T; Tamura K; Zhang Z; Horiuchi Y; Sugiya M; Yoshida K; Yanagisawa A; Gridnev ID
    J Am Chem Soc; 2012 Jan; 134(3):1754-69. PubMed ID: 22192064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric carbon-carbon bond formation under continuous-flow conditions with chiral heterogeneous catalysts.
    Tsubogo T; Ishiwata T; Kobayashi S
    Angew Chem Int Ed Engl; 2013 Jun; 52(26):6590-604. PubMed ID: 23720303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric hydrogenation in the core of dendrimers.
    He YM; Feng Y; Fan QH
    Acc Chem Res; 2014 Oct; 47(10):2894-906. PubMed ID: 25247446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly enantioselective hydrogenation of ο-alkoxy tetrasubstituted enamides catalyzed by a Rh/(R,S)-JosiPhos catalyst.
    Meng J; Gao M; Lv H; Zhang X
    Org Lett; 2015 Apr; 17(8):1842-5. PubMed ID: 25812166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose-supported chiral rhodium nanoparticles as sustainable heterogeneous catalysts for asymmetric carbon-carbon bond-forming reactions.
    Yasukawa T; Miyamura H; Kobayashi S
    Chem Sci; 2015 Nov; 6(11):6224-6229. PubMed ID: 30090239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-Doped Carbon Enables Heterogeneous Asymmetric Insertion of Carbenoids into Amines Catalyzed by Rhodium Nanoparticles.
    Masuda R; Yasukawa T; Yamashita Y; Kobayashi S
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12786-12790. PubMed ID: 33720497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous Rh and Rh/Ag bimetallic nanoparticle catalysts immobilized on chiral polymers.
    Min H; Miyamura H; Yasukawa T; Kobayashi S
    Chem Sci; 2019 Aug; 10(32):7619-7626. PubMed ID: 31588313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.
    Li YY; Yu SL; Shen WY; Gao JX
    Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.