These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32902278)

  • 1. Assessing the Reactive Surface Area of Soils and the Association of Soil Organic Carbon with Natural Oxide Nanoparticles Using Ferrihydrite as Proxy.
    Mendez JC; Hiemstra T; Koopmans GF
    Environ Sci Technol; 2020 Oct; 54(19):11990-12000. PubMed ID: 32902278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: Increase in soil reactive surface area and effect on soluble phosphorus.
    Koopmans GF; Hiemstra T; Vaseur C; Chardon WJ; Voegelin A; Groenenberg JE
    Sci Total Environ; 2020 Apr; 711():135220. PubMed ID: 31831238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of phosphate extractability in flooded soils: Effect of solid-solution ratio and bicarbonate concentration.
    Amini M; Antelo J; Fiol S; Rahnemaie R
    Chemosphere; 2022 Sep; 303(Pt 3):135188. PubMed ID: 35660054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate adsorption by ferrihydrite-amended soils.
    Rhoton FE; Bigham JM
    J Environ Qual; 2005; 34(3):890-6. PubMed ID: 15843652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonate Adsorption to Ferrihydrite: Competitive Interaction with Phosphate for Use in Soil Systems.
    Mendez JC; Hiemstra T
    ACS Earth Space Chem; 2019 Jan; 3(1):129-141. PubMed ID: 30775652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Cr(vi) adsorption on soils: the role of the competition of soil organic matter.
    Shi Z; Peng S; Lin X; Liang Y; Lee SZ; Allen HE
    Environ Sci Process Impacts; 2020 Jan; 22(1):95-104. PubMed ID: 31897461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of nonpolar neutral organic compounds to low-surface-area metal (hydr)oxide- and humic acid- coated model aquifer sands.
    Joo JC; Song MS; Kim JK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):909-18. PubMed ID: 22423998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of Hg to preformed ferrihydrite-humic acid composites synthesized via co-precipitation and adsorption with different morphologies.
    Liu Y; Cheng Z; Zhi L; Zhou S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111097. PubMed ID: 32784016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic iron (hydr)oxide-glucose associations in subsurface soil: Effects on decomposability of mineral associated carbon.
    Porras RC; Hicks Pries CE; Torn MS; Nico PS
    Sci Total Environ; 2018 Feb; 613-614():342-351. PubMed ID: 28917173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic availability and uptake by edible rape (Brassica campestris L.) grown in contaminated soils spiked with carboxymethyl cellulose-stabilized ferrihydrite nanoparticles.
    Huo L; Huang D; Zeng X; Su S; Wang Y; Bai L; Wu C
    Environ Sci Pollut Res Int; 2018 May; 25(15):15080-15088. PubMed ID: 29557040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal sorption to Spodosol Bs horizons: Organic matter complexes predominate.
    Tiberg C; Sjöstedt C; Gustafsson JP
    Chemosphere; 2018 Apr; 196():556-565. PubMed ID: 29329088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generic CD-MUSIC-eSGC model parameters to predict the surface reactivity of iron (hydr)oxides.
    Jin J; Liang Y; Wang M; Fang L; Xiong J; Hou J; Tan W; Koopal L
    Water Res; 2023 Feb; 230():119534. PubMed ID: 36628867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling oxyanion adsorption on ferralic soil, part 1: parameter validation with phosphate ion.
    Pérez C; Antelo J; Fiol S; Arce F
    Environ Toxicol Chem; 2014 Oct; 33(10):2208-16. PubMed ID: 24838985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic strongly associates with ferrihydrite colloids formed in a soil effluent.
    Fritzsche A; Rennert T; Totsche KU
    Environ Pollut; 2011 May; 159(5):1398-405. PubMed ID: 21310516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption, oxidation, and bioaccessibility of As(III) in soils.
    Yang JK; Barnett MO; Zhuang J; Fendorf SE; Jardine PM
    Environ Sci Technol; 2005 Sep; 39(18):7102-10. PubMed ID: 16201635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-surface modeling to predict free zinc ion concentrations in low-zinc soils.
    Duffner A; Weng L; Hoffland E; van der Zee SE
    Environ Sci Technol; 2014 May; 48(10):5700-8. PubMed ID: 24742258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of soil organic matter by gel-like ferrihydrite and dense ferrihydrite.
    Gu X; Wu W; Lin D; Yang K
    Sci Total Environ; 2022 Aug; 835():155507. PubMed ID: 35483464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid Phase Speciation and Solubility of Vanadium in Highly Weathered Soils.
    Wisawapipat W; Kretzschmar R
    Environ Sci Technol; 2017 Aug; 51(15):8254-8262. PubMed ID: 28657305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.
    Yan J; Jiang T; Yao Y; Lu S; Wang Q; Wei S
    J Environ Sci (China); 2016 Apr; 42():152-162. PubMed ID: 27090706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.