These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32902425)

  • 1. FTDT simulations of local plasmonic fields for theranostic core-shell gold-based nanoparticles.
    Kon I; Zyubin A; Samusev I
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):1398-1403. PubMed ID: 32902425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FDTD Simulations for Rhodium and Platinum Nanoparticles for UV Plasmonics.
    Zyubin AY; Kon II; Poltorabatko DA; Samusev IG
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Plasmonic Nanoprobes in Electromagnetic Field Enhancement for SERS Detection of Biomarkers.
    Cheng HW; Xue SY; Li J; Gordon JS; Wang S; Filippone NR; Ngo QM; Zhong CJ
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical FDTD-based simulations and Raman experiments of femtosecond LIPSS.
    Zyubin A; Kon I; Tcibulnikova A; Matveeva K; Khankaev A; Myslitskaya N; Lipnevich L; Demishkevich E; Medvedskaya P; Samusev I; Bryukhanov V; Demin M
    Opt Express; 2021 Feb; 29(3):4547-4558. PubMed ID: 33771030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO
    Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FDTD Simulations of Shell Scattering in Au@SiO
    Kon I; Zyubin A; Samusev I
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single nanoparticle based optical pH probe.
    Jensen RA; Sherin J; Emory SR
    Appl Spectrosc; 2007 Aug; 61(8):832-8. PubMed ID: 17716401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of SiO
    Darfarin G; Salehi R; Alizadeh E; Nasiri Motlagh B; Akbarzadeh A; Farajollahi A
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):836-846. PubMed ID: 29741418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids.
    Zhang Y; Walkenfort B; Yoon JH; Schlücker S; Xie W
    Phys Chem Chem Phys; 2015 Sep; 17(33):21120-6. PubMed ID: 25491599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Silver Coating on Raman Label Incorporated Gold Nanoparticles Assembled Silica Nanoparticles.
    Pham XH; Hahm E; Kang E; Son BS; Ha Y; Kim HM; Jeong DH; Jun BH
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications.
    Khlebtsov NG; Lin L; Khlebtsov BN; Ye J
    Theranostics; 2020; 10(5):2067-2094. PubMed ID: 32089735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures.
    Xie W; Walkenfort B; Schlücker S
    J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering.
    Wang W; Li Z; Gu B; Zhang Z; Xu H
    ACS Nano; 2009 Nov; 3(11):3493-6. PubMed ID: 19886639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Raman tag-bridged core-shell Au@Cu
    He J; Dong J; Hu Y; Li G; Hu Y
    Nanoscale; 2019 Mar; 11(13):6089-6100. PubMed ID: 30869726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved synthesis of gold and silver nanoshells.
    Brito-Silva AM; Sobral-Filho RG; Barbosa-Silva R; de Araújo CB; Galembeck A; Brolo AG
    Langmuir; 2013 Apr; 29(13):4366-72. PubMed ID: 23472978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanorod@chiral mesoporous silica core-shell nanoparticles with unique optical properties.
    Liu W; Zhu Z; Deng K; Li Z; Zhou Y; Qiu H; Gao Y; Che S; Tang Z
    J Am Chem Soc; 2013 Jul; 135(26):9659-64. PubMed ID: 23742128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.