These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32902453)

  • 1. Self-reference method for measuring the transmission matrices of scattering media.
    Zhang H; Zhang B; Feng Q; Ding Y; Liu Q
    Appl Opt; 2020 Sep; 59(25):7547-7552. PubMed ID: 32902453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OAM-basis transmission matrix in optics: a novel approach to manipulate light propagation through scattering media.
    Zhang H; Zhang B; Liu Q
    Opt Express; 2020 May; 28(10):15006-15015. PubMed ID: 32403532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating the transmission matrix of scattering media for nonlinear imaging beyond the memory effect.
    Hofer M; Brasselet S
    Opt Lett; 2019 May; 44(9):2137-2140. PubMed ID: 31042167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging through scattering media using differential intensity transmission matrices with different Hadamard orderings.
    Liu J; Zhao W; Zhai A; Wang D
    Opt Express; 2022 Dec; 30(25):45447-45458. PubMed ID: 36522950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focusing through scattering media by a single polarization transmission matrix with binary polarization modulation.
    Yang S; Yu X; Zhang Y; Li X; Yu J; Li Y; Xie Z
    J Opt Soc Am A Opt Image Sci Vis; 2023 May; 40(5):898-903. PubMed ID: 37133186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavefront-shaping-based pattern regeneration through the scattering medium.
    Zhao M; Wang H; Tian Z
    J Opt Soc Am A Opt Image Sci Vis; 2019 Sep; 36(9):1483-1487. PubMed ID: 31503840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale, high-contrast glare suppression with low-transmittance eigenchannels of aperture-target transmission matrices.
    Zhang H; Zhang B; Liu K; Fu X; Liu Q
    Opt Lett; 2021 Apr; 46(7):1498-1501. PubMed ID: 33793474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning a focus through scattering media without using the optical memory effect.
    Mastiani B; Ohn TL; Vellekoop IM
    Opt Lett; 2019 Nov; 44(21):5226-5229. PubMed ID: 31674974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoacoustic Wavefront Shaping with High Signal to Noise Ratio for Light Focusing Through Scattering Media.
    Sun J; Zhang B; Feng Q; He H; Ding Y; Liu Q
    Sci Rep; 2019 Mar; 9(1):4328. PubMed ID: 30867506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel wavefront optimization method for focusing light through random scattering media.
    Cui M
    Opt Lett; 2011 Mar; 36(6):870-2. PubMed ID: 21403712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of focusing through scattering media using the continuous sequential algorithm.
    Thompson JV; Hokr BH; Yakovlev VV
    J Mod Opt; 2016; 63(1):80-84. PubMed ID: 27018179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media.
    Tripathi S; Paxman R; Bifano T; Toussaint KC
    Opt Express; 2012 Jul; 20(14):16067-76. PubMed ID: 22772297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring optical transmission matrices by wavefront shaping.
    Yoon J; Lee K; Park J; Park Y
    Opt Express; 2015 Apr; 23(8):10158-67. PubMed ID: 25969058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intensity-only measurement of partially uncontrollable transmission matrix: demonstration with wave-field shaping in a microwave cavity.
    Del Hougne P; Rajaei B; Daudet L; Lerosey G
    Opt Express; 2016 Aug; 24(16):18631-41. PubMed ID: 27505825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix.
    Boniface A; Dong J; Gigan S
    Nat Commun; 2020 Dec; 11(1):6154. PubMed ID: 33262335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-adaptive method for creating high efficiency communication channels through random scattering media.
    Hao X; Martin-Rouault L; Cui M
    Sci Rep; 2014 Jul; 4():5874. PubMed ID: 25070592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise-tolerant wavefront shaping in a Hadamard basis.
    Mastiani B; Vellekoop IM
    Opt Express; 2021 May; 29(11):17534-17541. PubMed ID: 34154294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed scattering medium characterization with application to focusing light through turbid media.
    Conkey DB; Caravaca-Aguirre AM; Piestun R
    Opt Express; 2012 Jan; 20(2):1733-40. PubMed ID: 22274516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques.
    Drémeau A; Liutkus A; Martina D; Katz O; Schülke C; Krzakala F; Gigan S; Daudet L
    Opt Express; 2015 May; 23(9):11898-911. PubMed ID: 25969280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blind focusing through strongly scattering media using wavefront shaping with nonlinear feedback.
    Osnabrugge G; Amitonova LV; Vellekoop IM
    Opt Express; 2019 Apr; 27(8):11673-11688. PubMed ID: 31053010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.