These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32902466)

  • 21. Laser paint removal monitoring based on time-resolved spectroscopy.
    Zhou Q; Deng G; Chen Y; Zhou S
    Appl Opt; 2019 Dec; 58(34):9421-9425. PubMed ID: 31873533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research Progress and Challenges in Laser-Controlled Cleaning of Aluminum Alloy Surfaces.
    Deng J; Zhao G; Lei J; Zhong L; Lei Z
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental study and mechanism analysis of a pulsed laser cleaning aluminum alloy process.
    Zhou L; Zhao H; Zhang Q; Wang Q; Ma G; Qiao Y; Wang H
    Appl Opt; 2024 Feb; 63(6):A32-A43. PubMed ID: 38437355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of ablation mechanisms at low fluence for ultrashort and short-pulse laser exposure of very thin molybdenum films on glass.
    Gupta PD; O'Connor GM
    Appl Opt; 2016 Mar; 55(9):2117-25. PubMed ID: 27140542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers.
    Harada T; Spence S; Margiolakis A; Deckoff-Jones S; Ploeger R; Shugar AN; Hamm JF; Dani KM; Dani AR
    Materials (Basel); 2017 Jan; 10(2):. PubMed ID: 28772468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on effective cleaning of gold layer from fused silica mirrors using nanosecond-pulsed Nd:YAG laser.
    Choubey A; Singh A; Modi MH; Upadhyaya BN; Lodha GS; Oak SM
    Appl Opt; 2013 Nov; 52(31):7540-8. PubMed ID: 24216656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of laser pulse duration and fluence on DKDP crystal laser conditioning.
    Liu Z; Geng F; Lei X; Li Y; Cheng J; Zheng Y; Wang J; Xu Q
    Appl Opt; 2020 Jun; 59(17):5240-5246. PubMed ID: 32543544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Research on the Effect of Molten Salt Ultrasonic Composite Cleaning for Paint Removal.
    Zhang BC; Jia XJ; Li FY; Sun YH
    ACS Omega; 2019 Oct; 4(16):17072-17082. PubMed ID: 31646254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman spectroscopy of thermo- and laser-induced transformations of gouache paint layer of copper phthalocyanine blue.
    Balakhnina IA; Chikishev AY; Brandt NN
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124430. PubMed ID: 38759572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glass Substrate Dust Removal Using 233 fs Laser-Generated Shockwave.
    Kim M; Choi P; Jo JH; Kim K
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulsed laser cleaning of C contamination on a glass insulator surface.
    Fang C; Hu T; Pu Z; Li P; Wu T
    Appl Opt; 2023 Jun; 62(18):4727-4739. PubMed ID: 37707245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Efficiency Copper Removal by Nitrogen Plasma-Assisted Picosecond Laser Processing.
    Li Y; Guo X; Wang S; Zhang S; Zhao Y; Guo D; Zhang C; Liu S; Cheng GJ; Liu F
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical modeling of laser ablation of quaternary bronze alloys: case studies comparing femtosecond and nanosecond LIBS experimental data.
    Fornarini L; Fantoni R; Colao F; Santagata A; Teghil R; Elhassan A; Harith MA
    J Phys Chem A; 2009 Dec; 113(52):14364-74. PubMed ID: 19817368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of phase explosion in the nanosecond laser ablation of aluminum.
    Mazzi A; Miotello A
    J Colloid Interface Sci; 2017 Mar; 489():126-130. PubMed ID: 27562512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear imaging microscopy for assessing structural and photochemical modifications upon laser removal of dammar varnish on photosensitive substrates.
    Oujja M; Psilodimitrakopoulos S; Carrasco E; Sanz M; Philippidis A; Selimis A; Pouli P; Filippidis G; Castillejo M
    Phys Chem Chem Phys; 2017 Aug; 19(34):22836-22843. PubMed ID: 28812067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanosecond, high-intensity pulsed laser ablation of myocardium tissue at the ultraviolet, visible, and near-infrared wavelengths: in-vitro study.
    Sato S; Ogura M; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Obara M; Kikuchi M; Ashida H
    Lasers Surg Med; 2001; 29(5):464-73. PubMed ID: 11891735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Method for determination of the volume of material ejected as molten droplets during visible nanosecond ablation.
    Fishburn JM; Withford MJ; Coutts DW; Piper JA
    Appl Opt; 2004 Dec; 43(35):6473-6. PubMed ID: 15617284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature Field-Assisted Ultraviolet Nanosecond Pulse Laser Processing of Polyethylene Terephthalate (PET) Film.
    Xu J; Rong Y; Liu W; Zhang T; Xin G; Huang Y; Wu C
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of nanosecond laser pre-irradiation on the femtosecond laser-induced damage of Ta2O5/SiO2 high reflector.
    Chen S; Zhao Y; Li D; He H; Shao J
    Appl Opt; 2012 Apr; 51(10):1495-502. PubMed ID: 22505067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C.
    Oraevsky AA; Jacques SL; Esenaliev RO; Tittel FK
    Lasers Surg Med; 1996; 18(3):231-40. PubMed ID: 8778517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.