These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32902528)

  • 1. Tetrazine metallation boosts rate and regioselectivity of inverse electron demand Diels-Alder (iEDDA) addition of dienophiles.
    Schnierle M; Blickle S; Filippou V; Ringenberg MR
    Chem Commun (Camb); 2020 Oct; 56(80):12033-12036. PubMed ID: 32902528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aromatic Heterocycles as Productive Dienophiles in the Inverse Electron-Demand Diels-Alder Reactions of 1,3,5-Triazines.
    Xu G; Bai X; Dang Q
    Acc Chem Res; 2020 Apr; 53(4):773-781. PubMed ID: 32227911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dramatically Enhanced Reactivity of Fullerenes and Tetrazine towards the Inverse-Electron-Demand Diels-Alder Reaction inside a Porous Porphyrinic Cage.
    Dhamija A; Gunnam A; Yu X; Lee H; Hwang IC; Ho Ko Y; Kim K
    Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202209326. PubMed ID: 36104313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions.
    Zawada Z; Guo Z; Oliveira BL; Navo CD; Li H; Cal PMSD; Corzana F; Jiménez-Osés G; Bernardes GJL
    Bioconjug Chem; 2021 Aug; 32(8):1812-1822. PubMed ID: 34264651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regioselective Inverse Electron Demand Diels-Alder Reactions of N-Acyl 6-Amino-3-(methylthio)-1,2,4,5-tetrazines.
    Boger DL; Schaum RP; Garbaccio RM
    J Org Chem; 1998 Sep; 63(18):6329-6337. PubMed ID: 11672266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels-Alder reactions. Potential applications for pretargeted
    Billaud EMF; Shahbazali E; Ahamed M; Cleeren F; Noël T; Koole M; Verbruggen A; Hessel V; Bormans G
    Chem Sci; 2017 Feb; 8(2):1251-1258. PubMed ID: 28451267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal Control of Efficient
    Yang B; Kwon K; Jana S; Kim S; Avila-Crump S; Tae G; Mehl RA; Kwon I
    Bioconjug Chem; 2020 Oct; 31(10):2456-2464. PubMed ID: 33034448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clip to Click: Controlling Inverse Electron-Demand Diels-Alder Reactions with Macrocyclic Tetrazines.
    Novianti I; Kowada T; Mizukami S
    Org Lett; 2022 May; 24(17):3223-3226. PubMed ID: 35446571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Highly Reactive and Low Lipophilicity Fluorine-18 Labeled Tetrazine Derivative for Pretargeted PET Imaging.
    Keinänen O; Li XG; Chenna NK; Lumen D; Ott J; Molthoff CF; Sarparanta M; Helariutta K; Vuorinen T; Windhorst AD; Airaksinen AJ
    ACS Med Chem Lett; 2016 Jan; 7(1):62-6. PubMed ID: 26819667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational insights into the inverse electron-demand Diels-Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents' effects on the reaction rate.
    García-Aznar P; Escorihuela J
    Org Biomol Chem; 2022 Aug; 20(32):6400-6412. PubMed ID: 35876298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, Characterization, and Cycloaddition Reactivity of a Monocyclic Aromatic 1,2,3,5-Tetrazine.
    Wu ZC; Boger DL
    J Am Chem Soc; 2019 Oct; 141(41):16388-16397. PubMed ID: 31524389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse electron demand Diels-Alder reactions in chemical biology.
    Oliveira BL; Guo Z; Bernardes GJL
    Chem Soc Rev; 2017 Aug; 46(16):4895-4950. PubMed ID: 28660957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the inverse electron demand Diels-Alder reaction in rats using a scandium-44-labelled tetrazine for pretargeted PET imaging.
    Edem PE; Sinnes JP; Pektor S; Bausbacher N; Rossin R; Yazdani A; Miederer M; Kjær A; Valliant JF; Robillard MS; Rösch F; Herth MM
    EJNMMI Res; 2019 May; 9(1):49. PubMed ID: 31140047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse Electron-Demand Diels-Alder Bioconjugation Reactions Using 7-Oxanorbornenes as Dienophiles.
    Agramunt J; Ginesi R; Pedroso E; Grandas A
    J Org Chem; 2020 May; 85(10):6593-6604. PubMed ID: 32319293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies of inverse electron demand Diels-Alder reactions (iEDDA) of norbornenes and 3,6-dipyridin-2-yl-1,2,4,5-tetrazine.
    Knall AC; Hollauf M; Slugovc C
    Tetrahedron Lett; 2014 Aug; 55(34):4763-4766. PubMed ID: 25152544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of tetrazine-tetracyanobutadienes and their transformation into pyridazines
    Kamble AV; Raj K A; Malakalapalli RR
    Org Biomol Chem; 2023 Jul; 21(28):5790-5798. PubMed ID: 37395082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closer Look at Inverse Electron Demand Diels-Alder and Nucleophilic Addition Reactions on
    Ketkaew R; Creazzo F; Luber S
    Top Catal; 2022; 65(1-4):1-17. PubMed ID: 35153451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Screening of Different Polyglycerin-Based Dienophile Macromonomers for Efficient Nanogel Formation through IEDDA Inverse Nanoprecipitation.
    Oehrl A; Schötz S; Haag R
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900510. PubMed ID: 31750985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent Post-assembly Modification Triggers Structural Transformations of Borromean Rings.
    Gao WX; Feng HJ; Lin YJ; Jin GX
    J Am Chem Soc; 2019 Jun; 141(23):9160-9164. PubMed ID: 31117652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcontact Printing Patterning of an HOPG Surface by an Inverse Electron Demand Diels-Alder Reaction.
    Zhu J; Hiltz J; Tefashe UM; Mauzeroll J; Lennox RB
    Chemistry; 2018 Jun; 24(35):8904-8909. PubMed ID: 29873118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.