These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32902979)

  • 1. Temperature-Jump 2D IR Spectroscopy with Intensity-Modulated CW Optical Heating.
    Ashwood B; Lewis NHC; Sanstead PJ; Tokmakoff A
    J Phys Chem B; 2020 Oct; 124(39):8665-8677. PubMed ID: 32902979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics.
    Chung HS; Khalil M; Smith AW; Tokmakoff A
    Rev Sci Instrum; 2007 Jun; 78(6):063101. PubMed ID: 17614599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent downhill unfolding of ubiquitin. I. Nanosecond-to-millisecond resolved nonlinear infrared spectroscopy.
    Chung HS; Tokmakoff A
    Proteins; 2008 Jul; 72(1):474-87. PubMed ID: 18384151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient 2D IR spectroscopy of ubiquitin unfolding dynamics.
    Chung HS; Ganim Z; Jones KC; Tokmakoff A
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14237-42. PubMed ID: 17551015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser induced temperature-jump time resolved IR spectroscopy of zeolites.
    Hawkins AP; Edmeades AE; Hutchison CDM; Towrie M; Howe RF; Greetham GM; Donaldson PM
    Chem Sci; 2024 Mar; 15(10):3453-3465. PubMed ID: 38455000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.
    Davis CM; Reddish MJ; Dyer RB
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 178():185-191. PubMed ID: 28189834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of a Zinc-Finger ββα-Motif Investigated Using Two-Dimensional and Time-Resolved Vibrational Spectroscopy.
    Meuzelaar H; Panman MR; van Dijk CN; Woutersen S
    J Phys Chem B; 2016 Nov; 120(43):11151-11158. PubMed ID: 27723346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces.
    Carter JA; Wang Z; Dlott DD
    Acc Chem Res; 2009 Sep; 42(9):1343-51. PubMed ID: 19388671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel dual mode X-band EPR resonator for rapid in situ microwave heating.
    Folli A; Choi H; Barter M; Harari J; Richards E; Slocombe D; Porch A; Murphy DM
    J Magn Reson; 2020 Jan; 310():106644. PubMed ID: 31812887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin.
    Chung HS; Khalil M; Smith AW; Ganim Z; Tokmakoff A
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):612-7. PubMed ID: 15630083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared spectroscopic discrimination between the loop and alpha-helices and determination of the loop diffusion kinetics by temperature-jump time-resolved infrared spectroscopy for cytochrome c.
    Ye M; Zhang QL; Li H; Weng YX; Wang WC; Qiu XG
    Biophys J; 2007 Oct; 93(8):2756-66. PubMed ID: 17557782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.
    Kubelka J
    Photochem Photobiol Sci; 2009 Apr; 8(4):499-512. PubMed ID: 19337664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Resolved Temperature-Jump Infrared Spectroscopy at a High Repetition Rate.
    Greetham GM; Clark IP; Young B; Fritsch R; Minnes L; Hunt NT; Towrie M
    Appl Spectrosc; 2020 Jun; 74(6):720-727. PubMed ID: 32114769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity.
    Li D; Li Y; Li H; Wu X; Yu Q; Weng Y
    Rev Sci Instrum; 2015 May; 86(5):053105. PubMed ID: 26026512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques.
    Popp A; Scheerer D; Heck B; Hauser K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():192-199. PubMed ID: 28364666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature- and pressure-induced unfolding and refolding of ubiquitin: a static and kinetic Fourier transform infrared spectroscopy study.
    Herberhold H; Winter R
    Biochemistry; 2002 Feb; 41(7):2396-401. PubMed ID: 11841233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective hydrogen bond reorganization in water studied with temperature-dependent ultrafast infrared spectroscopy.
    Nicodemus RA; Corcelli SA; Skinner JL; Tokmakoff A
    J Phys Chem B; 2011 May; 115(18):5604-16. PubMed ID: 21417373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy.
    Brewer SH; Song B; Raleigh DP; Dyer RB
    Biochemistry; 2007 Mar; 46(11):3279-85. PubMed ID: 17305369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isomerization- and temperature-jump-induced dynamics of a photoswitchable β-hairpin.
    Deeg AA; Rampp MS; Popp A; Pilles BM; Schrader TE; Moroder L; Hauser K; Zinth W
    Chemistry; 2014 Jan; 20(3):694-703. PubMed ID: 24415361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy.
    Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA
    J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.