These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 32903256)
1. Comparative iTRAQ proteomic profiling of proteins associated with the adaptation of brown planthopper to moderately resistant vs. susceptible rice varieties. Zha W; You A PLoS One; 2020; 15(9):e0238549. PubMed ID: 32903256 [TBL] [Abstract][Full Text] [Related]
2. Characterization and comparative profiling of the small RNA transcriptomes in the Hemipteran insect Nilaparvata lugens. Zha W; Zhou L; Li S; Liu K; Yang G; Chen Z; Liu K; Xu H; Li P; Hussain S; You A Gene; 2016 Dec; 595(1):83-91. PubMed ID: 27693372 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide identification of long non-coding (lncRNA) in Zha W; Li S; Xu H; Chen J; Liu K; Li P; Liu K; Yang G; Chen Z; Shi S; Zhou L; You A PeerJ; 2022; 10():e13587. PubMed ID: 35910769 [TBL] [Abstract][Full Text] [Related]
4. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation. Li C; Luo C; Zhou Z; Wang R; Ling F; Xiao L; Lin Y; Chen H BMC Plant Biol; 2017 Feb; 17(1):57. PubMed ID: 28245796 [TBL] [Abstract][Full Text] [Related]
5. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Kang K; Yue L; Xia X; Liu K; Zhang W Metabolomics; 2019 Apr; 15(4):62. PubMed ID: 30976994 [TBL] [Abstract][Full Text] [Related]
6. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling. Wang Y; Guo H; Li H; Zhang H; Miao X BMC Genomics; 2012 Dec; 13():687. PubMed ID: 23228240 [TBL] [Abstract][Full Text] [Related]
7. A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper. Tan J; Wu Y; Guo J; Li H; Zhu L; Chen R; He G; Du B BMC Genomics; 2020 Feb; 21(1):144. PubMed ID: 32041548 [TBL] [Abstract][Full Text] [Related]
8. Identification of differentially expressed genes in brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae) responding to host plant resistance. Yang Z; Zhang F; Zhu L; He G Bull Entomol Res; 2006 Feb; 96(1):53-9. PubMed ID: 16441905 [TBL] [Abstract][Full Text] [Related]
9. Proteomic analysis of the rice (Oryza officinalis) provides clues on molecular tagging of proteins for brown planthopper resistance. Zhang X; Yin F; Xiao S; Jiang C; Yu T; Chen L; Ke X; Zhong Q; Cheng Z; Li W BMC Plant Biol; 2019 Jan; 19(1):30. PubMed ID: 30658570 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. Ji R; Yu H; Fu Q; Chen H; Ye W; Li S; Lou Y PLoS One; 2013; 8(11):e79612. PubMed ID: 24244529 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants. Yang Z; Zhang F; He Q; He G Arch Insect Biochem Physiol; 2005 Jun; 59(2):59-66. PubMed ID: 15898115 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification of long noncoding RNA genes and their potential association with fecundity and virulence in rice brown planthopper, Nilaparvata lugens. Xiao H; Yuan Z; Guo D; Hou B; Yin C; Zhang W; Li F BMC Genomics; 2015 Oct; 16():749. PubMed ID: 26437919 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of microbial community and dynamics of Asaia in the brown planthopper from susceptible and resistant rice varieties. Ojha A; Zhang W BMC Microbiol; 2019 Jun; 19(1):139. PubMed ID: 31234788 [TBL] [Abstract][Full Text] [Related]
14. Mucin-like protein, a saliva component involved in brown planthopper virulence and host adaptation. Huang HJ; Liu CW; Xu HJ; Bao YY; Zhang CX J Insect Physiol; 2017 Apr; 98():223-230. PubMed ID: 28115117 [TBL] [Abstract][Full Text] [Related]
15. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions. Kobayashi T J Insect Physiol; 2016 Jan; 84():32-39. PubMed ID: 26668110 [TBL] [Abstract][Full Text] [Related]
16. A time-course transcriptomic analysis reveals the key responses of a resistant rice cultivar to brown planthopper infestation. Dong M; Wu C; Lian L; Shi L; Xie Z; Zhang J; Jiang Z Sci Rep; 2024 Sep; 14(1):22455. PubMed ID: 39341852 [TBL] [Abstract][Full Text] [Related]
17. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Ren J; Gao F; Wu X; Lu X; Zeng L; Lv J; Su X; Luo H; Ren G Sci Rep; 2016 Nov; 6():37645. PubMed ID: 27876888 [TBL] [Abstract][Full Text] [Related]
18. Cell culture of the rice brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Xu Y; Chen YH; Yu X In Vitro Cell Dev Biol Anim; 2014; 50(5):384-8. PubMed ID: 24399256 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome analysis of defense response of rice to Nilaparvata lugens and Chilo suppressalis infestation. Li H; Zhou Z; Hua H; Ma W Int J Biol Macromol; 2020 Nov; 163():2270-2285. PubMed ID: 32971164 [TBL] [Abstract][Full Text] [Related]
20. Combined miRNA and mRNA sequencing reveals the defensive strategies of resistant YHY15 rice against differentially virulent brown planthoppers. Yu B; Geng M; Xue Y; Yu Q; Lu B; Liu M; Shao Y; Li C; Xu J; Li J; Hu W; Tang H; Li P; Liu Q; Jing S Front Plant Sci; 2024; 15():1366515. PubMed ID: 38562566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]